Flexural experimental study on reinforced concrete beams strengthened with carbon fiber-reinforced polymer laminates using anchorage systems

2019 ◽  
Vol 9 (8) ◽  
pp. 923-930
Author(s):  
Ning Zhuang ◽  
Junzhou Chen ◽  
Miao Zheng ◽  
Da Chen

Flexural capacity of RC beams gets significant improvement with externally bonded Carbon Fiber-reinforced Polymer (CFRP) sheet. The anchorage system is a valid means to restrain or delay debonding failure caused by stress concentration at the ends of CFRP sheets. In this paper, four RC beams, measuring 150 × 200 × 1900 mm, were examined under four-point bending test. One beam was applied for contrast. And other three were CFRP strengthened with no anchorage, CF anchors (carbon fiber anchors) and U-wraps (U-shaped CFRP wraps). The primary purpose of the experiment was to validate the effectiveness of CF anchors and U-wraps in improving the flexure character of beams strengthened with CFRP sheets. The experimental results revealed that the strengthened beams using anchorage systems performed remarkably in beam ductility, flexural capacity, load-deflection response and failure mode compared with the contrast beam. The anchorage systems were more effective and necessary to enhance the flexural behavior of beams as using CFRP laminates for flexural strengthening.

2006 ◽  
Vol 33 (11) ◽  
pp. 1438-1449 ◽  
Author(s):  
Ayman S Kamel ◽  
Alaa E Elwi ◽  
Roger J.J Cheng

This paper presents a study on the interfacial behavior of carbon fiber reinforced polymer (CFRP) sheets when applied to concrete members as external reinforcement. Two bond test methods that are detailed in the paper were used in separate test series to study the bond behavior and failure mechanism of CFRP sheets bonded to concrete. A modified push-apart test method was proposed and tested. It was concluded that there existed an effective length beyond which there will be no increase in the ultimate capacity of the joint. An experimental test method to determine the effective bond length was also proposed and tested. The strains at the edge of the CFRP sheets are consistently higher than those at the center. The anchorage requirements for the CFRP sheets were also investigated in this study. Anchor sheets placed at 90° to the primary test sheets and bonded underneath the tested sheet showed better or equivalent overall bond behavior compared with those bonded on top of the tested sheet. The distance at which the anchor sheet is placed from the crack does not appear to change the bond behavior.Key words: bond, concrete, debonding, failure mechanism, carbon fiber reinforced polymer (CFRP) sheets, anchor sheets.


Author(s):  
Sri Rejeki Laku Utami

ABSTRACTThe effect of Carbon Fiber Reinforced Polymer (CFRP) on reinforced concrete beams is expected to contribute to increased ductility. In this study five beam specimens. The first test object is a 3D16 Normal beam that is used as a normal beam. The second test object is a 3D16 CFRP beam which is used as a beam with CFRP treatment. The third test object is a 4D16 Normal beam that is used as a normal beam. The fourth test object is a 4D16 CFRP beam that is used as a beam with CFRP treatment. The fifth test object is the 5D16 CFRP beam used as a beam with CFRP treatment. The dimensions of the beams are 150 x 250 mm, with an effective length of 2000 mm. Pembebanan diberikan One Point Loads, untuk melakukan uji lentur maka pembebanan pada balok direncanakan dengan menempatkan satu buah gaya P secara simetris pada jarak ½ L yaitu sebesar 1000 mm. Dan diberikan perlakuan CFRP pada balok 3D16 CFRP sepanjang 600 mm (2,4 h) ditengah bentang yang panjangnya 2.000 mm  dengan perlakuan CFRP Completely Wrapped Member. From the results of testing the maximum flexural capacity in a row for the 3D16 Normal beam is 104.04 kN while the 3D16 CFRP beam has a maximum increase in bending capacity of 119.52 kN while the 4D16 Normal beam has a maximum bending capacity of 161.28 kN while the 4D16 beam CFRP has a maximum increase in bending capacity of 162.64 kN, while the 5D16 CFRP beam has a maximum increase in flexural capacity of 173.16 kN. Keyword: CFRP (Carbon Fiber Reinforced Polymer), Flexural StrengthABSTRAKPengaruh Carbon Fiber Reinforced Polymer (CFRP) pada balok beton bertulang diharapkan memberikan konstribusi terhadap peningkatan daktilitas. Pada kajian ini lima buah benda uji balok. Benda uji pertama adalah balok 3D16 Normal yang digunakan sebagai balok normal. Benda uji ke dua adalah balok 3D16 CFRP yang digunakan sebagai balok dengan perlakuan CFRP. Benda uji ke tiga adalah balok 4D16 Normal yang digunakan sebagai balok normal. Benda uji ke empat dalah balok 4D16 CFRP yang digunakan sebagai balok dengan perlakuan CFRP. Benda uji ke lima dalah balok 5D16 CFRP yang digunakan sebagai balok dengan perlakuan CFRP. Dimensi balok – balok tersebut adalah 150 x 250 mm, dengan panjang efektif 2000 mm. Pembebanan diberikan One Point Loads, untuk melakukan uji lentur maka pembebanan pada balok direncanakan dengan menempatkan satu buah gaya P secara simetris pada jarak ½ L yaitu sebesar 1000 mm. Dan diberikan perlakuanCFRP pada balok 3D16CFRP sepanjang 600 mm (2,4 h) ditengah bentang yang panjangnya 2.000 mm  dengan perlakuan CFRPCompletely Wrapped Member. Dari hasil pengujian kapasitas lentur maksimum secara berturut- turut untuk balok 3D16 Normal sebesar 104,04 kN sedangkan pada balok 3D16 CFRP mengalami peningkatan kapasitas lentur maksimum sebesar 119,52 kN sedangkan  balok 4D16 Normal memiliki kapasitas lentur maksimum sebesar 161,28 kN sedangkan balok 4D16 CFRP mengalami peningkatan kapasitas lentur maksimum sebesar 162,64 kN, sedangkan balok 5D16 CFRP mengalami peningkatan kapasitas lentur maksimum sebesar 173,16 kN. Kata kunci: CFRP (Carbon Fiber Reinforced Polymer), Kuat Lentur


2021 ◽  
pp. 136943322110499
Author(s):  
Riyam J Abed ◽  
Mohammed A Mashrei ◽  
Ali A Sultan

The externally bonded reinforcement on grooves (EBROG) method is increasingly recognized as an alternative strengthening method that can overcome the debonding problem. This study aims to experimentally investigate the effectiveness of EBROG as compared to the conventional externally bonded reinforcement (EBR) method in strengthening reinforced concrete (RC) beams. Twelve RC beams have been tested under four point load bending. One of these beams has been designated as a reference beam, seven beams have been strengthened with carbon fiber reinforced polymer (CFRP) sheets, and four beams have been strengthened with CFRP laminates using EBROG or EBR methods. The effect of CFRP type, number of layers, as well as the type of strengthening methods on the flexural performance have been also investigated. The load, deflection, stiffness, and failure modes were recorded and discussed intensively. Overall, test results indicated that the flexural strength and stiffness of the strengthened specimens using EBR or EBROG methods increased compared to the control beam, where the increase in the load carrying capacity of beams strengthened using the EBR method ranged between 24.8 and 48.2% and by the EBROG method ranged between 31.7 and 76.7% of the control beam. The most interesting result obtained is that the failure mode of beams has been changed from debonding of CFRP material to rupture of CFRP in some samples strengthened by EBROG, which demonstrates the superior behavior of this strengthening technique as compared to the traditional strengthening using EBR.


2019 ◽  
Vol 3 (1) ◽  
pp. 26
Author(s):  
Rafael Souza ◽  
Leandro Trautwein ◽  
Mauricio Ferreira

This paper presents and discusses the procedures adopted for repairing and strengthening a damaged reinforced concrete corbel of an industrial biomass boiler. The reinforced concrete corbel was subjected to concrete spalling, favoring the risk of the main tie reinforcement slip in the anchorage zone. The proposed solution involved a local repair with a polymeric mortar and subsequent strengthening using carbon fiber reinforced polymer (FRP) sheets, attending the requirements imposed by the in site conditions and the design plans. The intervention allowed the confinement of the concrete zone subjected to spalling and provided additional safety for the main tie reinforcement of the corbel. The applied technique was demonstrated to be fast, reliable, practical, and cheaper than other available solutions, such as section enlargements with concrete jacketing.


Sign in / Sign up

Export Citation Format

Share Document