Flexural behavior of reinforced concrete beams strengthened by carbon fiber reinforced polymer using different strengthening techniques

2021 ◽  
pp. 136943322110499
Author(s):  
Riyam J Abed ◽  
Mohammed A Mashrei ◽  
Ali A Sultan

The externally bonded reinforcement on grooves (EBROG) method is increasingly recognized as an alternative strengthening method that can overcome the debonding problem. This study aims to experimentally investigate the effectiveness of EBROG as compared to the conventional externally bonded reinforcement (EBR) method in strengthening reinforced concrete (RC) beams. Twelve RC beams have been tested under four point load bending. One of these beams has been designated as a reference beam, seven beams have been strengthened with carbon fiber reinforced polymer (CFRP) sheets, and four beams have been strengthened with CFRP laminates using EBROG or EBR methods. The effect of CFRP type, number of layers, as well as the type of strengthening methods on the flexural performance have been also investigated. The load, deflection, stiffness, and failure modes were recorded and discussed intensively. Overall, test results indicated that the flexural strength and stiffness of the strengthened specimens using EBR or EBROG methods increased compared to the control beam, where the increase in the load carrying capacity of beams strengthened using the EBR method ranged between 24.8 and 48.2% and by the EBROG method ranged between 31.7 and 76.7% of the control beam. The most interesting result obtained is that the failure mode of beams has been changed from debonding of CFRP material to rupture of CFRP in some samples strengthened by EBROG, which demonstrates the superior behavior of this strengthening technique as compared to the traditional strengthening using EBR.

2018 ◽  
Vol 22 (6) ◽  
pp. 1412-1425 ◽  
Author(s):  
Sara Honarparast ◽  
Georges El-Saikaly ◽  
Omar Chaallal

A large number of existing buildings have seismic-resistant systems designed according to old code provisions. These structural systems exhibit non-ductile behavior and can present a significant risk in the case of a moderate or significant seismic event. Reinforced concrete–coupled shear walls designed to old codes and standards are among those deficient structures that need to be seismically upgraded. This article aims to investigate a new retrofitting and upgrading method using externally bonded carbon fiber–reinforced polymer composites for existing or/and damaged reinforced concrete coupling beams that can improve the seismic performance of them during earthquakes. To this end, an experimental test was conducted to evaluate the seismic behavior of two identical reinforced concrete–coupled shear wall specimens under reverse cyclic loading. To simulate the old existing building, the specimens were designed and constructed according to the old 1941 National Building Code of Canada with a conventionally reinforced coupling beam. One of the specimens was tested as a control, and the other was strengthened using externally bonded carbon fiber–reinforced polymer composites to evaluate the improvement in its seismic performance. Results show that the retrofit using externally bonded carbon fiber–reinforced polymer resulted in significant enhancement in strength and energy dissipation capacity compared to the conventionally reinforced coupling beam from the control specimen. In addition, externally bonded carbon fiber–reinforced polymer sheets resulted in much improved hysteretic and ductile behavior and in lesser strength and stiffness degradation.


2015 ◽  
Vol 754-755 ◽  
pp. 432-436
Author(s):  
Ibrahim H. Alfahdawi ◽  
S.A. Osman

When reinforced concrete (RC) beams are found deficient in flexure, and fails in shear capacity after shear strengthening, the need to use new technique for flexure strengthening become important. Over the years, there are many experimental studies had been carried out with this technique of strengthening, and finding from other researchers have proved to be effective and successful. In this study, the behavior of flexure in RC beams strengthened with carbon fiber reinforced polymer (CFRP) were investigated. ANSYS11 software package of finite element method was use to simulate two models of RC beams with different parametric study such as (i) effect of grade of concrete, (ii) number of layers of CFRP strips, (iii) effect of steel stirrups and CFRP strips and (iv) longitudinal reinforcement yield stress. The results show that for beams strengthened with CFRP has increased in capacity load up to 32.8%. In general, good agreement between the FE solution and the available experimental results has been obtained.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document