Cavitation Erosion Resistance in Seawater of CoNiCrAlY Coating Fabricated by Atmospheric Plasma Spraying Technology for Cu Alloy

2016 ◽  
Vol 8 (9) ◽  
pp. 1861-1865
Author(s):  
Min-Su Han ◽  
Il-Cho Park ◽  
Myoung-Jun Kim ◽  
Jae-Yong Jeong ◽  
Jung-Hyung Lee ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1477
Author(s):  
Zining Yang ◽  
Weize Wang ◽  
Shujuan Deng ◽  
Huanjie Fang ◽  
Ting Yang ◽  
...  

Gadolinium zirconate with excellent high-temperature phase stability and sintering resistance has become a very promising candidate material for a new generation of thermal barrier coatings (TBCs). However, the low fracture toughness of gadolinium zirconate greatly limits its application. In this study, gadolinium zirconate (GZ) and two kinds of toughened gadolinium zirconate (GZ/YSZ prepared by mixed powder of Gd2Zr2O7 and YSZ and GSZC prepared by (Gd0.925Sc0.075)2(Zr0.7Ce0.3)2O7 powder) double-layered TBCs were prepared by atmospheric plasma spraying (APS). The fracture toughness of the GZ/YSZ coating and GSZC coating were 9 times and 3.5 times that of GZ coating, respectively. The results of thermal shock test showed that the three TBCs exhibit different failure mechanisms. During the thermal shock test, cracking occurred at the interfaces between the YSZ layer and the BC or GZ/YSZ layer, while GSZC TBC failed due to premature cracking inside the GSZC layer. The particle erosion rate of the GZ, GZ/YSZ, and GZSC coatings were 1.81, 0.48, and 1.01 mg/g, respectively, indicating that the erosion resistance of coatings is related to their fracture toughness. Furthermore, the superior erosion resistance of the GZ/YSZ and GSZC coatings can be attributed to the conversion of crack propagation path during the erosion test.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 346 ◽  
Author(s):  
Zhenping Shi ◽  
Jiqiang Wang ◽  
Zhengbin Wang ◽  
Yanxin Qiao ◽  
Tianying Xiong ◽  
...  

Cavitation erosion and jet impingement erosion can result in a great loss of materials. NiTi alloy is a very promising candidate to acquire cavitation erosion resistance and jet impingement erosion resistance because of its superelasticity. Due to the high cost and poor workability of NiTi alloy, many people tried to overcome such drawbacks by preparing NiTi coatings on the basis of deteriorating the good properties as little as possible. From the aspect of the application of NiTi coating, the erosion resistance should be evaluated comprehensively. One of these evaluations involves the comparison of cavitation erosion resistance and jet impingement erosion resistance of NiTi. This evaluation has not been made thus far. Thus, in this study, the NiTi coating was prepared by air plasma spraying (APS) using pre-alloyed NiTi powder. Its microstructure, chemical composition and phase transformation were identified. Cavitation erosion behavior and jet impingement erosion behavior of the as-sprayed NiTi coating were compared. The results showed that the coating exhibited better jet impingement erosion resistance than cavitation erosion resistance. This was attributed to the oxides, impurities, cracks and pores that existed in the coating, whose effects on deteriorating the cavitation erosion were far greater than those worsening the jet impingement erosion.


Author(s):  
Juliana Barbarioli ◽  
André Tschiptschin ◽  
Cherlio Scandian ◽  
Manuelle Curbani Romero

2021 ◽  
Vol 409 ◽  
pp. 126838
Author(s):  
Xinlong Wei ◽  
Wuyan Zhu ◽  
Aolin Ban ◽  
Dejia Zhu ◽  
Chao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document