scholarly journals Changes in apparent duration follow shifts in perceptual timing

2015 ◽  
Vol 15 (6) ◽  
pp. 2 ◽  
Author(s):  
Aurelio Bruno ◽  
Inci Ayhan ◽  
Alan Johnston
2008 ◽  
Vol 20 (12) ◽  
pp. 2185-2197 ◽  
Author(s):  
Jennifer T. Coull ◽  
Bruno Nazarian ◽  
Franck Vidal

The temporal discrimination paradigm requires subjects to compare the duration of a probe stimulus to that of a sample previously stored in working or long-term memory, thus providing an index of timing that is independent of a motor response. However, the estimation process itself comprises several component cognitive processes, including timing, storage, retrieval, and comparison of durations. Previous imaging studies have attempted to disentangle these components by simply measuring brain activity during early versus late scanning epochs. We aim to improve the temporal resolution and precision of this approach by using rapid event-related functional magnetic resonance imaging to time-lock the hemodynamic response to presentation of the sample and probe stimuli themselves. Compared to a control (color-estimation) task, which was matched in terms of difficulty, sustained attention, and motor preparation requirements, we found selective activation of the left putamen for the storage (“encoding”) of stimulus duration into working memory (WM). Moreover, increased putamen activity was linked to enhanced timing performance, suggesting that the level of putamen activity may modulate the depth of temporal encoding. Retrieval and comparison of stimulus duration in WM selectively activated the right superior temporal gyrus. Finally, the supplementary motor area was equally active during both sample and probe stages of the task, suggesting a fundamental role in timing the duration of a stimulus that is currently unfolding in time.


1963 ◽  
Vol 61 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Sanford Goldstone ◽  
William K. Boardman ◽  
William T. Lhamon ◽  
Fred L. Fason ◽  
Clarence Jernigan

1991 ◽  
Vol 3 (4) ◽  
pp. 367-376 ◽  
Author(s):  
Laurie Lundy-Ekman ◽  
Richard Ivry ◽  
Steven Keele ◽  
Marjorie Woollacott

This study investigated the link between cognitive processes and neural structures involved in motor control. Children identified as clumsy through clinical assessment procedures were tested on tasks involving movement timing, perceptual timing, and force control. The clumsy children were divided into two groups: those with soft neurological signs associated with cerebellar dysfunction and those with soft neurological signs associated with dysfunction of the basal ganglia. A control group of age-matched children who did not exhibit evidence of clumsiness or soft neurological signs was also tested. The results showed a double dissociation between the two groups of clumsy children and the tests of timing and force. Clumsy children with cerebellar signs were more variable when attempting to tap a series of equal intervals. They were also more variable on the time perception task, indicating a deficit in motor and perceptual timing. The clumsy children with basal ganglia signs were unimpaired on the timing tasks. However, they were more variable in controlling the amplitude of isometric force pulses. These results support the hypothesis that the control of time and force are separate components of coordination and that these computations are dependent on different neural systems.


1991 ◽  
Vol 118 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Larry Hochhaus ◽  
Leila G. Swanson ◽  
Ann L. Carter
Keyword(s):  

1969 ◽  
Vol 28 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Goesta Ekman ◽  
Marianne Frankenhaeuser ◽  
Birgitta Berglund ◽  
Michael Waszak

8 Ss were exposed to vibrotactile stimulation of 250 Hz, applied to the tip of the left index finger. Seven stimulus intensities, ranging from 26 to 48 db, were each combined with three stimulus durations, 50, 250, and 1200 msec. A magnitude-estimation technique with fixed standard was employed to obtain scale values of the apparent duration of each stimulus. The results indicate that apparent duration can be described as a logarithmic function of stimulus intensity. This conclusion is in line with our previous findings concerning apparent duration of electrical stimulation.


Sign in / Sign up

Export Citation Format

Share Document