scholarly journals Active Maintenance of Working Memory Representations Remains Robust Under Automatic, But Not Non-Automatic, Processing of Distractor Stimuli

2017 ◽  
Vol 17 (10) ◽  
pp. 347
Author(s):  
Orestis Papaioannou ◽  
Steven Luck
2007 ◽  
Author(s):  
Nachshon Meiran ◽  
Yoav Kessler ◽  
Oshrit Cohen-Kdoshai ◽  
Ravid Elenbogen

2015 ◽  
Vol 47 (9) ◽  
pp. 1089
Author(s):  
Bao ZHANG ◽  
Jiaying SHAO ◽  
Cenlou HU ◽  
Sai Huang

NeuroImage ◽  
2018 ◽  
Vol 174 ◽  
pp. 153-163 ◽  
Author(s):  
A. Galvez-Pol ◽  
B. Calvo-Merino ◽  
A. Capilla ◽  
B. Forster

2007 ◽  
Vol 362 (1481) ◽  
pp. 761-772 ◽  
Author(s):  
Mark D'Esposito

Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.


Author(s):  
Christian Merkel ◽  
Mandy Viktoria Bartsch ◽  
Mircea A Schoenfeld ◽  
Anne-Katrin Vellage ◽  
Notger G Müller ◽  
...  

Visual working memory (VWM) is an active representation enabling the manipulation of item information even in the absence of visual input. A common way to investigate VWM is to analyze the performance at later recall. This approach, however, leaves uncertainties about whether the variation of recall performance is attributable to item encoding and maintenance or to the testing of memorized information. Here, we record the contralateral delay activity (CDA) - an established electrophysiological measure of item storage and maintenance - in human subjects performing a delayed orientation precision estimation task. This allows us to link the fluctuation of recall precision directly to the process of item encoding and maintenance. We show that for two sequentially encoded orientation items, the CDA amplitude reflects the precision of orientation recall of both items, with higher precision being associated with a larger amplitude. Furthermore, we show that the CDA amplitude for each item varies independently from each other, suggesting that the precision of memory representations fluctuates independently.


2012 ◽  
Vol 23 (8) ◽  
pp. 887-898 ◽  
Author(s):  
Valerie M. Beck ◽  
Andrew Hollingworth ◽  
Steven J. Luck

2021 ◽  
pp. 1-16
Author(s):  
Qing Yu ◽  
Bradley R. Postle

Abstract Humans can construct rich subjective experience even when no information is available in the external world. Here, we investigated the neural representation of purely internally generated stimulus-like information during visual working memory. Participants performed delayed recall of oriented gratings embedded in noise with varying contrast during fMRI scanning. Their trialwise behavioral responses provided an estimate of their mental representation of the to-be-reported orientation. We used multivariate inverted encoding models to reconstruct the neural representations of orientation in reference to the response. We found that response orientation could be successfully reconstructed from activity in early visual cortex, even on 0% contrast trials when no orientation information was actually presented, suggesting the existence of a purely internally generated neural code in early visual cortex. In addition, cross-generalization and multidimensional scaling analyses demonstrated that information derived from internal sources was represented differently from typical working memory representations, which receive influences from both external and internal sources. Similar results were also observed in intraparietal sulcus, with slightly different cross-generalization patterns. These results suggest a potential mechanism for how externally driven and internally generated information is maintained in working memory.


Sign in / Sign up

Export Citation Format

Share Document