scholarly journals Figure-ground organization and attention modulation in neurons of monkey area V2

2004 ◽  
Vol 4 (8) ◽  
pp. 197-197 ◽  
Author(s):  
T. Sugihara ◽  
F. T. Qiu ◽  
R. Heydt
Keyword(s):  
Area V2 ◽  
eNeuro ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. ENEURO.0479-18.2019 ◽  
Author(s):  
Brian Hu ◽  
Rüdiger von der Heydt ◽  
Ernst Niebur

2016 ◽  
Author(s):  
Jonathan R. Williford ◽  
Rüdiger von der Heydt

AbstractFigure-ground organization and border-ownership assignment are essential for understanding natural scenes. It has been shown that many neurons in the macaque visual cortex signal border-ownership in displays of simple geometric shapes such as squares, but how well these neurons resolve border-ownership in natural scenes is not known. We studied area V2 neurons in behaving macaques with static images of complex natural scenes. We found that about half of the neurons were border-ownership selective for contours in natural scenes and this selectivity originated from the image context. The border-ownership signals emerged within 70 ms after stimulus onset, only ~30 ms after response onset. A substantial fraction of neurons were highly consistent across scenes. Thus, the cortical mechanisms of figure-ground organization are fast and efficient even in images of complex natural scenes. Understanding how the brain performs this task so fast remains a challenge.Significance StatementHere we show, for the first time, that neurons in primate visual area V2 signal border-ownership for objects in complex natural scenes. Surprisingly, these signals appear as early as the border-ownership signals for simple figure displays. In fact, they emerge well before object selective activity appears in infero-temporal cortex, which rules out feedback from that region as an explanation. Thus, “objectness” is detected by extremely fast mechanisms that do not depend on feedback from the known object-recognition centers.


Author(s):  
Xiaolian Li ◽  
Qi Zhu ◽  
Wim Vanduffel

AbstractThe visuotopic organization of dorsal visual cortex rostral to area V2 in primates has been a longstanding source of controversy. Using sub-millimeter phase-encoded retinotopic fMRI mapping, we recently provided evidence for a surprisingly similar visuotopic organization in dorsal visual cortex of macaques compared to previously published maps in New world monkeys (Zhu and Vanduffel, Proc Natl Acad Sci USA 116:2306–2311, 2019). Although individual quadrant representations could be robustly delineated in that study, their grouping into hemifield representations remains a major challenge. Here, we combined in-vivo high-resolution myelin density mapping based on MR imaging (400 µm isotropic resolution) with fine-grained retinotopic fMRI to quantitatively compare myelin densities across retinotopically defined visual areas in macaques. Complementing previously documented differences in populational receptive-field (pRF) size and visual field signs, myelin densities of both quadrants of the dorsolateral posterior area (DLP) and area V3A are significantly different compared to dorsal and ventral area V3. Moreover, no differences in myelin density were observed between the two matching quadrants belonging to areas DLP, V3A, V1, V2 and V4, respectively. This was not the case, however, for the dorsal and ventral quadrants of area V3, which showed significant differences in MR-defined myelin densities, corroborating evidence of previous myelin staining studies. Interestingly, the pRF sizes and visual field signs of both quadrant representations in V3 are not different. Although myelin density correlates with curvature and anticorrelates with cortical thickness when measured across the entire cortex, exactly as in humans, the myelin density results in the visual areas cannot be explained by variability in cortical thickness and curvature between these areas. The present myelin density results largely support our previous model to group the two quadrants of DLP and V3A, rather than grouping DLP- with V3v into a single area VLP, or V3d with V3A+ into DM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin Siu ◽  
Justin Balsor ◽  
Sam Merlin ◽  
Frederick Federer ◽  
Alessandra Angelucci

AbstractThe mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


2004 ◽  
Vol 155 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Hiroyuki Nakamura ◽  
Wu Ri Le ◽  
Masumi Wakita ◽  
Akichika Mikami ◽  
Kazuo Itoh

Neuron ◽  
2005 ◽  
Vol 47 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Li Zhaoping
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document