scholarly journals Relative motion in the periphery of the visual field is a powerful cue for visuo-spatial attention

2010 ◽  
Vol 5 (8) ◽  
pp. 162-162
Author(s):  
D. A. Poggel ◽  
H. Strasburger ◽  
M. MacKeben
2019 ◽  
Vol 31 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Wladimir Kirsch ◽  
Roland Pfister ◽  
Wilfried Kunde

An object appears smaller in the periphery than in the center of the visual field. In two experiments ( N = 24), we demonstrated that visuospatial attention contributes substantially to this perceptual distortion. Participants judged the size of central and peripheral target objects after a transient, exogenous cue directed their attention to either the central or the peripheral location. Peripheral target objects were judged to be smaller following a central cue, whereas this effect disappeared completely when the peripheral target was cued. This outcome suggests that objects appear smaller in the visual periphery not only because of the structural properties of the visual system but also because of a lack of spatial attention.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Martin Szinte ◽  
Donatas Jonikaitis ◽  
Dragan Rangelov ◽  
Heiner Deubel

Each saccade shifts the projections of the visual scene on the retina. It has been proposed that the receptive fields of neurons in oculomotor areas are predictively remapped to account for these shifts. While remapping of the whole visual scene seems prohibitively complex, selection by attention may limit these processes to a subset of attended locations. Because attentional selection consumes time, remapping of attended locations should evolve in time, too. In our study, we cued a spatial location by presenting an attention-capturing cue at different times before a saccade and constructed maps of attentional allocation across the visual field. We observed no remapping of attention when the cue appeared shortly before saccade. In contrast, when the cue appeared sufficiently early before saccade, attentional resources were reallocated precisely to the remapped location. Our results show that pre-saccadic remapping takes time to develop suggesting that it relies on the spatial and temporal dynamics of spatial attention.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 174 ◽  
Author(s):  
Linde Morawetz ◽  
Lars Chittka ◽  
Johannes Spaethe

When honeybees are presented with a colour discrimination task, they tend to choose swiftly and accurately when objects are presented in the ventral part of their frontal visual field. In contrast, poor performance is observed when objects appear in the dorsal part. Here we investigate if this asymmetry is caused by fixed search patterns or if bees can use alternative search mechanisms such as spatial attention, which allows flexible focusing on different areas of the visual field. We asked individual honeybees to choose an orange rewarded target among blue distractors. Target and distractors were presented in the ventral visual field, the dorsal field or both. Bees presented with targets in the ventral visual field consistently had the highest search efficiency, with rapid decisions, high accuracy and direct flight paths. In contrast, search performance for dorsally located targets was inaccurate and slow at the beginning of the test phase, but bees increased their search performance significantly after a few learning trials: they found the target faster, made fewer errors and flew in a straight line towards the target. However, bees needed thrice as long to improve the search for a dorsally located target when the target’s position changed randomly between the ventral and the dorsal visual field. We propose that honeybees form expectations of the location of the target’s appearance and adapt their search strategy accordingly. Different possible mechanisms of this behavioural adaptation are discussed.


2017 ◽  
Vol 29 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Kamila Śmigasiewicz ◽  
Gabriel Sami Hasan ◽  
Rolf Verleger

In dynamically changing environments, spatial attention is not equally distributed across the visual field. For instance, when two streams of stimuli are presented left and right, the second target (T2) is better identified in the left visual field (LVF) than in the right visual field (RVF). Recently, it has been shown that this bias is related to weaker stimulus-driven orienting of attention toward the RVF: The RVF disadvantage was reduced with salient task-irrelevant valid cues and increased with invalid cues. Here we studied if also endogenous orienting of attention may compensate for this unequal distribution of stimulus-driven attention. Explicit information was provided about the location of T1 and T2. Effectiveness of the cue manipulation was confirmed by EEG measures: decreasing alpha power before stream onset with informative cues, earlier latencies of potentials evoked by T1-preceding distractors at the right than at the left hemisphere when T1 was cued left, and decreasing T1- and T2-evoked N2pc amplitudes with informative cues. Importantly, informative cues reduced (though did not completely abolish) the LVF advantage, indicated by improved identification of right T2, and reflected by earlier N2pc latency evoked by right T2 and larger decrease in alpha power after cues indicating right T2. Overall, these results suggest that endogenously driven attention facilitates stimulus-driven orienting of attention toward the RVF, thereby partially overcoming the basic LVF bias in spatial attention.


1996 ◽  
Vol 76 (1) ◽  
pp. 637-641 ◽  
Author(s):  
E. G. Keating ◽  
A. Pierre ◽  
S. Chopra

1. Neural pathology which impairs foveal smooth pursuit eye movements typically also degrades optokinetic pursuit of large textures, suggesting that the two kinds of pursuit share a common circuit. This study reports an exception. After sequential bilateral ablation of the pursuit area in the frontal lobe three monkeys displayed degraded pursuit of a small foveal target but performed normally on identical measures of optokinetic pursuit. 2. A related experiment in one subject demonstrated a pursuit deficit when the foveal target moved relative to the background, but not when background and target moved together. The frontal pursuit area may specifically control pursuit of relative motion, and do so by receiving signals primarily from motion detectors in the macular part of the visual field.


1999 ◽  
Vol 354 (1387) ◽  
pp. 1135-1144 ◽  
Author(s):  
Scott Makeig ◽  
Marissa Westerfield ◽  
Jeanne Townsend ◽  
Tzyy-Ping Jung ◽  
Eric Courchesne ◽  
...  

Spatial visual attention modulates the first negative–going deflection in the human averaged event–related potential (ERP) in response to visual target and non–target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non–target stimuli presented at five attended and non–attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus–attention conditions and decomposed the non–target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1a R and N1a L ) was evoked by the left and right visual field stimuli, respectively. Component N1a R peaked ca. 9 ms earlier than N1a L . Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were not reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio–temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.


Perception ◽  
10.1068/p5752 ◽  
2007 ◽  
Vol 36 (7) ◽  
pp. 955-970 ◽  
Author(s):  
Dorothe A Poggel ◽  
Hans Strasburger ◽  
Manfred MacKeben

Sudden changes of visual stimulation attract attention. The observer's body motion generates retinal-flow field patterns containing information about his/her own speed and trajectory and relative motion of other objects. We investigated the effectiveness of relative motion as an attentional cue and compared it with conventional cueing by appearance of a frame in the far periphery of the visual field. In a group of ten subjects, contrast thresholds for the perception of static Gabor grating orientation [four alternative non-forced-choice (4ANFC)] task were determined at 20°, 30°, 40°, and 60° eccentricity. Subsequently, near-threshold discrimination performance of Gabor pattern orientation without versus with a ring-shaped cue was measured at the same positions. The same Gabor patterns were then presented embedded in a random-dot flow field, and uncued discrimination performance was compared with performance after presentation of a relative-motion cue (RMC), ie a small random-dot field with motion in the opposite direction of the flow field. Both the conventional ring cue and the RMC induced significantly increased discrimination performance at all test locations. With the parameters chosen for this study, the RMC was slightly less effective than the conventional cue, but its effects were somewhat more pronounced in the far periphery of the visual field. Thus, relative motion is a powerful cue to attract attention to peripheral visual objects and improves performance as effectively as a conventional ring cue. The findings have practical relevance for everyday life, in particular for tasks like driving and navigation.


2020 ◽  
Author(s):  
Simran Purokayastha ◽  
Mariel Roberts ◽  
Marisa Carrasco

Performance as a function of polar angle at isoeccentric locations across the visual field is known as a performance field (PF) and is characterized by two asymmetries: the HVA (Horizontal-Vertical Anisotropy) and VMA (Vertical Meridian Asymmetry). Exogenous (involuntary) spatial attention does not affect the shape of the PF, improving performance similarly across polar angle. Here we investigated whether endogenous (voluntary) spatial attention, a flexible mechanism, can attenuate these perceptual asymmetries. Twenty participants performed an orientation discrimination task while their endogenous attention was either directed to the target location or distributed across all possible locations. The effects of attention were assessed either using the same stimulus contrast across locations, or equating difficulty across locations using individually-titrated contrast thresholds. In both experiments, endogenous attention similarly improved performance at all locations, maintaining the canonical PF shape. Thus, despite its voluntary nature, like exogenous attention, endogenous attention cannot alleviate perceptual asymmetries at isoeccentric locations.


Sign in / Sign up

Export Citation Format

Share Document