scholarly journals A Novel Type of Multiterminal Motor Endplate in Human Extraocular Muscles

2018 ◽  
Vol 59 (1) ◽  
pp. 539 ◽  
Author(s):  
Jing-Xia Liu ◽  
Fatima Pedrosa Domellöf
Author(s):  
Asish C. Nag ◽  
Lee D. Peachey

Cat extraocular muscles consist of two regions: orbital, and global. The orbital region contains predominantly small diameter fibers, while the global region contains a variety of fibers of different diameters. The differences in ultrastructural features among these muscle fibers indicate that the extraocular muscles of cats contain at least five structurally distinguishable types of fibers.Superior rectus muscles were studied by light and electron microscopy, mapping the distribution of each fiber type with its distinctive features. A mixture of 4% paraformaldehyde and 4% glutaraldehyde was perfused through the carotid arteries of anesthetized adult cats and applied locally to exposed superior rectus muscles during the perfusion.


Author(s):  
Bruce R. Pachter

Diabetes mellitus is one of the commonest causes of neuropathy. Diabetic neuropathy is a heterogeneous group of neuropathic disorders to which patients with diabetes mellitus are susceptible; more than one kind of neuropathy can frequently occur in the same individual. Abnormalities are also known to occur in nearly every anatomic subdivision of the eye in diabetic patients. Oculomotor palsy appears to be common in diabetes mellitus for their occurrence in isolation to suggest diabetes. Nerves to the external ocular muscles are most commonly affected, particularly the oculomotor or third cranial nerve. The third nerve palsy of diabetes is characteristic, being of sudden onset, accompanied by orbital and retro-orbital pain, often associated with complete involvement of the external ocular muscles innervated by the nerve. While the human and experimental animal literature is replete with studies on the peripheral nerves in diabetes mellitus, there is but a paucity of reported studies dealing with the oculomotor nerves and their associated extraocular muscles (EOMs).


1962 ◽  
Vol 41 (3) ◽  
pp. 474-480 ◽  
Author(s):  
Otto Wegelius ◽  
E. J. Jokinen

ABSTRACT In all previous investigations on experimental exophthalmos, heterologous thyrotrophic pituitary extracts have been used. These protein hormones stimulate antihormone formation in the test animals. Cortisone has been reported to effectively block antibody formation. In addition, it has been shown to potentiate TSH-induced exophthalmos in guinea-pigs. With rabbits as test animals, the hexosamine content of the orbital tissues was determined and used as an index of exophthalmos development and at the same time the antibody titres in the sera were followed. TSH injections for six weeks led to a highly significant accumulation of hexosamine in the retrobulbar connective tissue and in the extraocular muscles, i. e. an increase of up to 400% as compared with the control animals. At the same time a significant rise in antihormonal titres was detectable in the sera. Concomitant treatment with cortisone brought about an equal or higher accumulation of hexosamine but significantly lower antibody titres. The known opposite peripheral actions of TSH and cortisone can be reconciled with the synergy in producing experimental exophthalmos by attributing the synergetic action of cortisone to the blocking of antihormone formation. If less antihormones are produced, the effect of TSH is enhanced. Our experiments do not provide direct proof for this hypothesis. High hexosamine values in the orbit and low antihormone titres in the serum are, however, concomitant phenomena.


2020 ◽  
pp. 1-8
Author(s):  
Ranjan Gupta ◽  
Justin P. Chan ◽  
Jennifer Uong ◽  
Winnie A. Palispis ◽  
David J. Wright ◽  
...  

OBJECTIVECurrent management of traumatic peripheral nerve injuries is variable with operative decisions based on assumptions that irreversible degeneration of the human motor endplate (MEP) follows prolonged denervation and precludes reinnervation. However, the mechanism and time course of MEP changes after human peripheral nerve injury have not been investigated. Consequently, there are no objective measures by which to determine the probability of spontaneous recovery and the optimal timing of surgical intervention. To improve guidance for such decisions, the aim of this study was to characterize morphological changes at the human MEP following traumatic nerve injury.METHODSA prospective cohort (here analyzed retrospectively) of 18 patients with traumatic brachial plexus and axillary nerve injuries underwent biopsy of denervated muscles from the upper extremity from 3 days to 6 years after injury. Muscle specimens were processed for H & E staining and immunohistochemistry, with visualization via confocal and two-photon excitation microscopy.RESULTSImmunohistochemical analysis demonstrated varying degrees of fragmentation and acetylcholine receptor dispersion in denervated muscles. Comparison of denervated muscles at different times postinjury revealed progressively increasing degeneration. Linear regression analysis of 3D reconstructions revealed significant linear decreases in MEP volume (R = −0.92, R2 = 0.85, p = 0.001) and surface area (R = −0.75, R2 = 0.56, p = 0.032) as deltoid muscle denervation time increased. Surprisingly, innervated and structurally intact MEPs persisted in denervated muscle specimens from multiple patients 6 or more months after nerve injury, including 2 patients who had presented > 3 years after nerve injury.CONCLUSIONSThis study details novel and critically important data about the morphology and temporal sequence of events involved in human MEP degradation after traumatic nerve injuries. Surprisingly, human MEPs not only persisted, but also retained their structures beyond the assumed 6-month window for therapeutic surgical intervention based on previous clinical studies. Preoperative muscle biopsy in patients being considered for nerve transfer may be a useful prognostic tool to determine MEP viability in denervated muscle, with surviving MEPs also being targets for adjuvant therapy.


Sign in / Sign up

Export Citation Format

Share Document