scholarly journals High phi as a probe of global motion processing

2021 ◽  
Vol 21 (9) ◽  
pp. 2866
Author(s):  
Martin Bossard ◽  
Mark Wexler ◽  
Simon K. Rushton
2020 ◽  
Vol 38 (5) ◽  
pp. 395-405
Author(s):  
Luca Battaglini ◽  
Federica Mena ◽  
Clara Casco

Background: To study motion perception, a stimulus consisting of a field of small, moving dots is often used. Generally, some of the dots coherently move in the same direction (signal) while the rest move randomly (noise). A percept of global coherent motion (CM) results when many different local motion signals are combined. CM computation is a complex process that requires the integrity of the middle-temporal area (MT/V5) and there is evidence that increasing the number of dots presented in the stimulus makes such computation more efficient. Objective: In this study, we explored whether anodal direct current stimulation (tDCS) over MT/V5 would increase individual performance in a CM task at a low signal-to-noise ratio (SNR, i.e. low percentage of coherent dots) and with a target consisting of a large number of moving dots (high dot numerosity, e.g. >250 dots) with respect to low dot numerosity (<60 dots), indicating that tDCS favour the integration of local motion signal into a single global percept (global motion). Method: Participants were asked to perform a CM detection task (two-interval forced-choice, 2IFC) while they received anodal, cathodal, or sham stimulation on three different days. Results: Our findings showed no effect of cathodal tDCS with respect to the sham condition. Instead, anodal tDCS improves performance, but mostly when dot numerosity is high (>400 dots) to promote efficient global motion processing. Conclusions: The present study suggests that tDCS may be used under appropriate stimulus conditions (low SNR and high dot numerosity) to boost the global motion processing efficiency, and may be useful to empower clinical protocols to treat visual deficits.


Cephalalgia ◽  
2011 ◽  
Vol 31 (11) ◽  
pp. 1199-1210 ◽  
Author(s):  
Kathryn E Webster ◽  
J Edwin Dickinson ◽  
Josephine Battista ◽  
Allison M McKendrick ◽  
David R Badcock

Aim: This study aimed to revisit previous findings of superior processing of motion direction in migraineurs with a more stringent direction discrimination task and to investigate whether increased internal noise can account for motion processing deficits in migraineurs. Methods: Groups of 13 migraineurs (4 with aura, 9 without aura) and 15 headache-free controls completed three psychophysical tasks: one detecting coherence in a motion stimulus, one discriminating the spiral angle in a glass pattern and another discriminating the spiral angle in a global-motion task. Internal noise estimates were obtained for all tasks using an N-pass method. Results: Consistent with previous research, migraineurs had higher motion coherence thresholds than controls. However, there were no significant performance differences on the spiral global-motion and global-form tasks. There was no significant group difference in internal noise estimates associated with any of the tasks. Conclusions: The results from this study suggest that variation in internal noise levels is not the mechanism driving motion coherence threshold differences in migraine. Rather, we argue that motion processing deficits may result from cortical changes leading to less efficient extraction of global-motion signals from noise.


2010 ◽  
Vol 10 (13) ◽  
pp. 22-22
Author(s):  
R. F. Hess ◽  
A. G. Zaharia

2019 ◽  
Vol 6 (3) ◽  
pp. 190114
Author(s):  
William Curran ◽  
Lee Beattie ◽  
Delfina Bilello ◽  
Laura A. Coulter ◽  
Jade A. Currie ◽  
...  

Prior experience influences visual perception. For example, extended viewing of a moving stimulus results in the misperception of a subsequent stimulus's motion direction—the direction after-effect (DAE). There has been an ongoing debate regarding the locus of the neural mechanisms underlying the DAE. We know the mechanisms are cortical, but there is uncertainty about where in the visual cortex they are located—at relatively early local motion processing stages, or at later global motion stages. We used a unikinetic plaid as an adapting stimulus, then measured the DAE experienced with a drifting random dot test stimulus. A unikinetic plaid comprises a static grating superimposed on a drifting grating of a different orientation. Observers cannot see the true motion direction of the moving component; instead they see pattern motion running parallel to the static component. The pattern motion of unikinetic plaids is encoded at the global processing level—specifically, in cortical areas MT and MST—and the local motion component is encoded earlier. We measured the direction after-effect as a function of the plaid's local and pattern motion directions. The DAE was induced by the plaid's pattern motion, but not by its component motion. This points to the neural mechanisms underlying the DAE being located at the global motion processing level, and no earlier than area MT.


2012 ◽  
Vol 36 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
Claire V. Hutchinson ◽  
Amanda Arena ◽  
Harriet A. Allen ◽  
Tim Ledgeway

2003 ◽  
Vol 20 (4) ◽  
pp. 421-428 ◽  
Author(s):  
ALEXA I. RUPPERTSBERG ◽  
SOPHIE M. WUERGER ◽  
MARCO BERTAMINI

For over 30 years there has been a controversy over whether color-defined motion can be perceived by the human visual system. Some results suggest that there is no chromatic motion mechanism at all, whereas others do find evidence for a purely chromatic motion mechanism. Here we examine the chromatic input to global motion processing for a range of color directions in the photopic luminance range. We measure contrast thresholds for global motion identification and simple detection using sparse random-dot kinematograms. The results show a discrepancy between the two chromatic axes: whereas it is possible for observers to perform the global motion task for stimuli modulated along the red–green axis, we could not assess the contrast threshold required for stimuli modulated along the yellowish-violet axis. The contrast required for detection for both axes, however, are well below the contrasts required for global motion identification. We conclude that there is a significant red–green input to global motion processing providing further evidence for the involvement of the parvocellular pathway. The lack of S-cone input to global motion processing suggests that the koniocellular pathway mediates the detection but not the processing of complex motion for our parameter range.


2010 ◽  
Vol 10 (10) ◽  
pp. 15-15 ◽  
Author(s):  
H. A. Allen ◽  
C. V. Hutchinson ◽  
T. Ledgeway ◽  
P. Gayle

2021 ◽  
Author(s):  
Catherine Manning ◽  
Cameron D Hassall ◽  
Laurence T Hunt ◽  
Anthony M Norcia ◽  
Eric-Jan Wagenmakers ◽  
...  

Children with and without dyslexia differ in their behavioural responses to visual information, particularly when required to pool dynamic signals over space and time. Importantly, multiple processes contribute to behavioural responses. Here we investigated which processing stages are affected in children with dyslexia when performing visual motion processing tasks, by combining two methods that are sensitive to the dynamic processes leading to responses. We used a diffusion model which decomposes response time and accuracy into distinct cognitive constructs, and high-density EEG. 50 children with dyslexia and 50 typically developing children aged 6 to 14 years judged the direction of motion as quickly and accurately as possible in two global motion tasks, which varied in their requirements for segregating signal-from-noise. Following our pre-registered analyses, we fitted hierarchical Bayesian diffusion models to the data, blinded to group membership. Unblinding revealed reduced evidence accumulation in children with dyslexia compared to typical children for both tasks. We also identified a response-locked EEG component which was maximal over centro-parietal electrodes which indicated a neural correlate of reduced drift-rate in dyslexia, thereby linking brain and behaviour. We suggest that children with dyslexia are slower to extract sensory evidence from global motion displays, regardless of whether they are required to segregate signal-from-noise, thus furthering our understanding of atypical perceptual decision-making processes in dyslexia.


2018 ◽  
Author(s):  
Anna E. Hughes ◽  
John A. Greenwood ◽  
Nonie J. Finlayson ◽  
D. Samuel Schwarzkopf

AbstractThe processing of motion changes throughout the visual hierarchy, from spatially restricted ‘local motion’ in early visual cortex to more complex large-field ‘global motion’ at later stages. Here we used functional magnetic resonance imaging (fMRI) to examine spatially selective responses in these areas related to the processing of random-dot stimuli defined by differences in motion. We used population receptive field (pRF) analyses to map retinotopic cortex using bar stimuli comprising coherently moving dots. In the first experiment, we used three separate background conditions: no background dots (dot-defined bar-only), dots moving coherently in the opposite direction to the bar (kinetic boundary) and dots moving incoherently in random directions (global motion). Clear retinotopic maps were obtained for the bar-only and kinetic-boundary conditions across visual areas V1-V3 and in higher dorsal areas. For the global-motion condition, retinotopic maps were much weaker in early areas and became clear only in higher areas, consistent with the emergence of global-motion processing throughout the visual hierarchy. However, in a second experiment we demonstrate that this pattern is not specific to motion-defined stimuli, with very similar results for a transparent-motion stimulus and a bar defined by a static low-level property (dot size) that should have driven responses particularly in V1. We further exclude explanations based on stimulus visibility by demonstrating that the observed differences in pRF properties do not follow the ability of observers to localise or attend to these bar elements. Rather, our findings indicate that dorsal extrastriate retinotopic maps may primarily be determined by the visibility of the neural responses to the bar relative to the background response (i.e. neural signal-to-noise ratios) and suggests that claims about stimulus selectivity from pRF experiments must be interpreted with caution.


Sign in / Sign up

Export Citation Format

Share Document