scholarly journals Malondialdehyde-Modified Photoreceptor Outer Segments Promote Choroidal Neovascularization in Mice

2022 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Yuhong Chen ◽  
Xinyue Zhu ◽  
Fuxiang Ye ◽  
Hong Wang ◽  
Xiaoling Wan ◽  
...  
2013 ◽  
Vol 54 (5) ◽  
pp. 3721 ◽  
Author(s):  
Michael D. Abràmoff ◽  
Robert F. Mullins ◽  
Kyungmoo Lee ◽  
Jeremy M. Hoffmann ◽  
Milan Sonka ◽  
...  

2014 ◽  
Vol 522 (16) ◽  
pp. 3577-3589 ◽  
Author(s):  
Guilian Tian ◽  
Kerrie H. Lodowski ◽  
Richard Lee ◽  
Yoshikazu Imanishi

2020 ◽  
Vol 21 (22) ◽  
pp. 8677
Author(s):  
Lital Remez ◽  
Ben Cohen ◽  
Mariela J. Nevet ◽  
Leah Rizel ◽  
Tamar Ben-Yosef

Photoreceptor disc component (PRCD) is a small protein which is exclusively localized to photoreceptor outer segments, and is involved in the formation of photoreceptor outer segment discs. Mutations in PRCD are associated with retinal degeneration in humans, mice, and dogs. The purpose of this work was to identify PRCD-binding proteins in the retina. PRCD protein-protein interactions were identified when implementing the Ras recruitment system (RRS), a cytoplasmic-based yeast two-hybrid system, on a bovine retina cDNA library. An interaction between PRCD and tubby-like protein 1 (TULP1) was identified. Co-immunoprecipitation in transfected mammalian cells confirmed that PRCD interacts with TULP1, as well as with its homolog, TUB. These interactions were mediated by TULP1 and TUB highly conserved C-terminal tubby domain. PRCD localization was altered in the retinas of TULP1- and TUB-deficient mice. These results show that TULP1 and TUB, which are involved in the vesicular trafficking of several photoreceptor proteins from the inner segment to the outer segment, are also required for PRCD exclusive localization to photoreceptor outer segment discs.


Author(s):  
Gilad Allon ◽  
Irit Mann ◽  
Lital Remez ◽  
Elisabeth Sehn ◽  
Leah Rizel ◽  
...  

Abstract Mutations of the PRCD gene are associated with rod-cone degeneration in both dogs and humans. Prcd is expressed in the mouse eye as early as embryonic day 14. In the adult mouse retina PRCD is expressed in the outer segments of both rod and cone photoreceptors. Immunoelectron microscopy revealed that PRCD is located at the outer segment rim, and that it is highly concentrated at the base of the outer segment. Prcd-knockout mice present with progressive retinal degeneration, starting at 20 weeks of age and onwards. This process is reflected by a significant and progressive reduction of both scotopic and photopic electroretinographic responses, and by thinning of the retina, and specifically of the outer nuclear layer, indicating photoreceptor loss. Electron microscopy revealed severe damage to photoreceptor outer segments, which is associated with immigration of microglia cells to the Prcd-knockout retina, and accumulation of vesicles in the inter-photoreceptor space. Phagocytosis of photoreceptor outer segment discs by the retinal pigmented epithelium is severely reduced. Our data show that Prcd-knockout mice serve as a good model for retinal degeneration caused by PRCD mutations in humans. Our findings in these mice support the involvement of PRCD in outer segment disc formation of both rod and cone photoreceptors. Furthermore, they suggest a feedback mechanism which coordinates the rate of photoreceptor outer segment disc formation, shedding and phagocytosis. This study has important implications for understanding the function of PRCD in the retina, as well as for future development of treatment modalities for PRCD-deficiency in humans.


Sign in / Sign up

Export Citation Format

Share Document