disc formation
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 24)

H-INDEX

31
(FIVE YEARS 9)

2021 ◽  
Vol 645 ◽  
pp. A43
Author(s):  
O. Schib ◽  
C. Mordasini ◽  
N. Wenger ◽  
G.-D. Marleau ◽  
R. Helled

Context. The properties of protoplanetary discs determine the conditions for planet formation. In addition, planets can already form during the early stages of infall. Aims. We constrain physical quantities such as the mass, radius, lifetime, and gravitational stability of protoplanetary discs by studying their evolution from formation to dispersal. Methods. We perform a population synthesis of protoplanetary discs with a total of 50 000 simulations using a 1D vertically integrated viscous evolution code, studying a parameter space of final stellar mass from 0.05 to 5 M⊙. Each star-and-disc system is set up shortly after the formation of the protostar and fed by infalling material from the parent molecular cloud core. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. Results. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of ~0.3 and 0.1 M⊙ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems characterised by a final stellar mass ~1 M⊙, we find disc masses of ~0.7 M⊙ for the “hydro” case and ~0.2 M⊙ for the “MHD” case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, ≈5–7 Myr on average. This is despite our choice of a high value of 10−2 for the background viscosity α-parameter. In addition, we find that fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation may be suppressed entirely. Conclusions. Our work draws a picture quite different from the one often assumed in planet formation studies: protoplanetary discs are more massive and live longer. This means that more mass is available for planet formation. Additionally, when fragmentation occurs, it can affect the disc’s evolution by transporting large amounts of mass radially. We suggest that the early phases in the lives of protoplanetary discs should be included in studies of planet formation. Furthermore, the evolution of the central star, including its accretion history, should be taken into account when comparing theoretical predictions of disc lifetimes with observations.


Reproduction ◽  
2020 ◽  
Vol 160 (4) ◽  
pp. 579-589 ◽  
Author(s):  
Priscila Ramos-Ibeas ◽  
Ismael Lamas-Toranzo ◽  
Álvaro Martínez-Moro ◽  
Celia de Frutos ◽  
Alejandra C Quiroga ◽  
...  

Failures during conceptus elongation are a major cause of pregnancy losses in ungulates, exerting a relevant economic impact on farming. The developmental events occurring during this period are poorly understood, mainly because this process cannot be recapitulated in vitro. Previous studies have established an in vitro post-hatching development (PHD) system that supports bovine embryo development beyond the blastocyst stage, based on agarose gel tunnels and serum- and glucose-enriched medium. Unfortunately, under this system embryonic disc formation is not achieved and embryos show notorious signs of apoptosis and necrosis. The objective of this study has been to develop an in vitro system able to support embryonic disc formation. We first compared post-hatching development inside agarose tunnels or free-floating over an agarose-coated dish in serum- and glucose-enriched medium (PHD medium). Culture inside agarose tunnels shaped embryo morphology by physical constriction, but it restricted embryo growth and did not provide any significant advantage in terms of development of hypoblast and epiblast lineages. In contrast to PHD medium, a chemically defined and enriched medium (N2B27) supported complete hypoblast migration and epiblast survival in vitro, even in the absence of agarose coating. Cells expressing the pluripotency marker SOX2 were observed in ~56% of the embryos and ~25% developed embryonic disc-like structures formed by SOX2+ cells. In summary, here we provide a culture system that supports trophectoderm proliferation, hypoblast migration and epiblast survival after the blastocyst stage.


2020 ◽  
Vol 497 (2) ◽  
pp. 2371-2384 ◽  
Author(s):  
Jianhui Lian ◽  
Daniel Thomas ◽  
Claudia Maraston ◽  
Timothy C Beers ◽  
Christian Moni Bidin ◽  
...  

ABSTRACT We extend our previous work on the age–chemical abundance structure of the Galactic outer disc to the inner disc (4 < r < 8  kpc) based on the SDSS/APOGEE survey. Different from the outer disc, the inner disc stars exhibit a clear bimodal distribution in the [Mg/Fe]–[Fe/H] plane. While a number of scenarios have been proposed in the literature, it remains challenging to recover this bimodal distribution with theoretical models. To this end, we present a chemical evolution model embedding a complex multiphase inner disc formation scenario that matches the observed bimodal [Mg/Fe]–[Fe/H] distribution. In this scenario, the formation of the inner disc is dominated by two main starburst episodes $6\,$Gyr apart with secular, low-level star formation activity in between. In our model, the first starburst occurs at early cosmic times ($t\sim 1\,$ Gyr) and the second one $6\,$ Gyr later at a cosmic time of $t\sim 7\,$ Gyr. Both these starburst episodes are associated with gas accretion events in our model, and are quenched rapidly. The first starburst leads to the formation of the high-α sequence, and the second starburst leads to the formation of the metal-poor low-α sequence. The metal-rich low-α stars, instead, form during the secular evolution phase between the two bursts. Our model shows that the α-dichotomy originates from the rapid suppression of star formation after the first starburst. The two starburst episodes are likely to be responsible for the formation of the geometric thick disc (z >1 kpc), with the old inner thick disc and the young outer thick disc forming during the first and the second starbursts, respectively.


2020 ◽  
Vol 497 (2) ◽  
pp. 2057-2065 ◽  
Author(s):  
Diego López-Cámara ◽  
Enrique Moreno Méndez ◽  
Fabio De Colle

ABSTRACT The evolution and physics of the common envelope (CE) phase are still not well understood. Jets launched from a compact object during this stage may define the evolutionary outcome of the binary system. We focus on the case in which jets are launched from a neutron star (NS) engulfed in the outer layers of a red giant (RG). We run a set of three-dimensional hydrodynamical simulations of jets with different luminosities and inclinations. The luminosity of the jet is self-regulated by the mass accretion rate and an efficiency η. Depending on the value of η the jet can break out of the previously formed bulge (‘successful jet’) and aligns against the incoming wind, in turn, it will realign in favour of the direction of the wind. The jet varies in size and orientation and may present quiescent and active epochs. The inclination of the jet and the Coriolis and centrifugal forces, only slightly affect the global evolution. As the accretion is hypercritical, and the specific angular momentum is above the critical value for the formation of a disc, we infer the formation of a disc and launching of jets. The discs’ mass and size would be ∼10−2 M⊙ and ≳1010 cm, and it may have rings with different rotation directions. In order to have a successful jet from a white dwarf, the ejection process needs to be very efficient (η ∼ 0.5). For main-sequence stars, there is not enough energy reservoir to launch a successful jet.


2020 ◽  
Vol 496 (2) ◽  
pp. 1768-1783
Author(s):  
Ç K Dönmez ◽  
M M Serim ◽  
S Ç İnam ◽  
Ş Şahiner ◽  
D Serim ◽  
...  

ABSTRACT We probe the properties of the transient X-ray pulsar MAXI J1409−619 through RXTE and Swift follow-up observations of the outburst in 2010. We are able to phase-connect the pulse arrival times for the 25 d episode during the outburst. We suggest that either an orbital model (with Porb ≃ 14.7(4) d) or a noise process due to random torque fluctuations (with Sr ≈ 1.3 × 10−18 Hz2 s−2 Hz−1) is plausible to describe the residuals of the timing solution. The frequency derivatives indicate a positive torque–luminosity correlation, which implies temporary accretion disc formation during the outburst. We also discover several quasi-periodic oscillations in company with their harmonics whose centroid frequencies decrease as the source flux decays. The variation of the pulsed fraction and spectral power-law index of the source with X-ray flux is interpreted as the sign of transition from a critical to a sub-critical accretion regime at the critical luminosity within the range of 6 × 1037–1.2 × 1038 erg s−1. Using pulse-phase-resolved spectroscopy, we show that the phases with higher flux tend to have lower photon indices, indicating that the polar regions produce spectrally harder emission.


2020 ◽  
Vol 495 (4) ◽  
pp. 3795-3806 ◽  
Author(s):  
James Wurster ◽  
Benjamin T Lewis

ABSTRACT Non-ideal magnetohydrodynamics (MHD) is the dominant process. We investigate the effect of magnetic fields (ideal and non-ideal) and turbulence (sub- and transsonic) on the formation of circumstellar discs that form nearly simultaneously with the formation of the protostar. This is done by modelling the gravitational collapse of a 1 M⊙ gas cloud that is threaded with a magnetic field and imposed with both rotational and turbulent velocities. We investigate magnetic fields that are parallel/antiparallel and perpendicular to the rotation axis, two rotation rates, and four Mach numbers. Disc formation occurs preferentially in the models that include non-ideal MHD where the magnetic field is antiparallel or perpendicular to the rotation axis. This is independent of the initial rotation rate and level of turbulence, suggesting that subsonic turbulence plays a minimal role in influencing the formation of discs. Aside from first core outflows that are influenced by the initial level of turbulence, non-ideal MHD processes are more important than turbulent processes during the formation of discs around low-mass stars.


2020 ◽  
Vol 495 (4) ◽  
pp. 3751-3762 ◽  
Author(s):  
Conrad Chan ◽  
Bernhard Müller ◽  
Alexander Heger

ABSTRACT Fallback in core-collapse supernovae plays a crucial role in determining the properties of the compact remnants and of the ejecta composition. We perform three-dimensional simulations of mixing and fallback for selected non-rotating supernova models to study how explosion energy and asymmetries correlate with the remnant mass, remnant kick, and remnant spin. We find that the strongest kick and spin are imparted by partial fallback in an asymmetric explosion. Black hole (BH) kicks of several hundred $\mathrm{km}\, \mathrm{s}^{-1}$ and spin parameters of $\mathord {\sim }0.25$ can be obtained in this scenario. If the initial explosion energy barely exceeds the envelope binding energy, stronger fallback results, and the remnant kick and spin remain small. If the explosion energy is high with respect to the envelope binding energy, there is little fallback with a small effect on the remnant kick, but the spin-up by fallback can be substantial. For a non-rotating $12\, \mathrm{M}_\odot$ progenitor, we find that the neutron star is spun up to millisecond periods. The high specific angular momentum of the fallback material can also lead to disc formation around BHs. Fallback may thus be a pathway towards millisecond-magnetar or collapsar-type engines for hypernovae and gamma-ray bursts that does not require rapid progenitor rotation. Within our small set of simulations, none reproduced the peculiar layered fallback necessary to explain the metal-rich iron-poor composition of many carbon-enhanced metal-poor (CEMP) stars. Models with different explosion energy and different realizations of asymmetries may, however, be compatible with CEMP abundance patterns.


2020 ◽  
Vol 493 (4) ◽  
pp. 5464-5478
Author(s):  
Anastasia V Kasparova ◽  
Ivan Yu Katkov ◽  
Igor V Chilingarian

ABSTRACT Galactic discs are known to have a complex multilayer structure. An in-depth study of the stellar population properties of the thin and thick components can elucidate the formation and evolution of disc galaxies. Even though thick discs are ubiquitous, their origin is still debated. Here we probe the thick disc formation scenarios by investigating NGC 7572, an enormous edge-on galaxy having R25 ≈ 25 kpc and Vrot ≈ 370 km s−1, which substantially exceeds the Milky Way size and mass. We analysed DECaLS archival imaging and found that the disc of NGC 7572 contains two flaring stellar discs (a thin and a thick disc) with similar radial scales. We collected deep long-slit spectroscopic data using the 6 m Russian BTA telescope and analysed them with a novel technique. We first reconstructed a non-parametric stellar line-of-sight velocity distribution along the radius of the galaxy and then fitted it with two kinematic components accounting for the orbital distribution of stars in thin and thick discs. The old thick disc turned out to be 2.7 times as massive as the intermediate-age thin component, 1.6 × 1011 M⊙ versus 5.9 × 1010 M⊙, which is very unusual. The different duration of the formation epochs evidenced by the [Mg/Fe] values of +0.3 and +0.15 dex for the thick and thin discs respectively, their kinematics, and the mass ratio suggest that in NGC 7572 we observe a rapidly formed very massive thick disc and an underdeveloped thin disc, whose growth ended prematurely due to the exhaustion of the cold gas likely because of environmental effects.


Sign in / Sign up

Export Citation Format

Share Document