scholarly journals Variability of Microphysical Parameters in High-Altitude Ice Clouds: Results of the Remote Sensing Method

1997 ◽  
Vol 36 (6) ◽  
pp. 633-648 ◽  
Author(s):  
Sergey Y. Matrosov

Abstract The remote sensing method for retrieving vertical profiles of microphysical parameters in ice clouds from ground-based measurements taken by the Doppler radar and IR radiometer was applied to several cloud cases observed during different field experiments including FIRE-II, ASTEX, and the Arizona Program. The measurements were performed with the NOAA Environmental Technology Laboratory instrumentation. The observed ice clouds were mostly cirrus clouds located in the upper troposphere above 5.6 km. Their geometrical thicknesses varied from a few hundred meters to 3 km. Characteristic cloud particle sizes expressed in median mass diameters of equal-volume spheres varied from about 25 μm to more than 400 μm. Typically, characteristic particle sizes were increasing toward the cloud base, with the exception of the lowest range gates where particles were quickly sublimating. Highest particle concentrations were usually observed near the cloud tops. The vertical variability of particle sizes inside an individual cloud could reach one order of magnitude. The standard deviation of the mean profile for a typical cloud is usually factor of 2 or 3 smaller than mean values of particle characteristic size. Typical values of retrieved cloud ice water content varied from 1 to 100 mg m−3; however, individual variations were as high as four orders of magnitude. There was no consistent pattern in the vertical distribution of ice water content except for the rapid decrease in the vicinity of the cloud base. The relationships between retrieved cloud parameters and measured radar reflectivities were considered. The uncertainty of estimating cloud parameters from the power-law regressions is discussed. The parameters of these regressions varied from cloud to cloud and were comparable to the parameters in corresponding regressions obtained from direct particle sampling in other experiments. Relationships between cloud microphysical parameters and reflectivity can vary even for the same observational case. The variability diminishes if stronger reflectivities are considered. A procedure of “tuning” cloud microphysics–reflectivity regressions for individual profiles is suggested. Such a procedure can simplify the radar–radiometer method and make it applicable for a broader range of clouds.

2015 ◽  
Vol 54 (10) ◽  
pp. 2087-2097 ◽  
Author(s):  
Sujan Khanal ◽  
Zhien Wang

AbstractRemote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.


2021 ◽  
Author(s):  
Florian Ewald ◽  
Silke Groß ◽  
Martin Wirth ◽  
Julien Delanoë ◽  
Stuart Fox ◽  
...  

Abstract. Ice clouds and their effect on Earth's radiation budget are one of the largest sources of uncertainty in climate change predictions. The uncertainty in predicting ice cloud feedbacks in a warming climate arises due to uncertainties in measuring and explaining their current optical and microphysical properties as well as from insufficient knowledge about their spatial and temporal distribution. This knowledge can be significantly improved by active remote sensing, which can help to explore the vertical profile of ice cloud microphysics, such as ice particle size and ice water content. This study focuses on the well-established variational approach VarCloud to retrieve ice cloud microphysics from radar-lidar measurements. While active backscatter retrieval techniques surpass the information content of most passive, vertically integrated retrieval techniques, their accuracy is limited by essential assumptions about the ice crystal shape. Since most radar-lidar retrieval algorithms rely heavily on universal mass-size relationships to parameterize the prevalent ice particle shape, biases in ice water content and ice water path can be expected in individual cloud regimes. In turn, these biases can lead to an erroneous estimation of the radiative effect of ice clouds. In many cases, these biases could be spotted and corrected by the simultaneous exploitation of measured solar radiances. The agreement with measured solar radiances is a logical prerequisite for an accurate estimation of the radiative effect of ice clouds. To this end, this study exploits simultaneous radar, lidar, and passive measurements made on board the German High Altitude and Long Range Research Aircraft. By using the ice clouds derived with VarCloud as an input to radiative transfer calculations, simulated solar radiances are compared to measured solar radiances made above the actual clouds. This radiative closure study is done using different ice crystal models to improve the knowledge of the prevalent ice crystal shape. While in one case aggregates were capable of reconciling radar, lidar, and solar radiance measurements, this study also analyses a more problematic case for which no radiative closure could be achieved. In this case, simultaneously acquired in-situ measurements could narrow this inability to an unexpected high ice crystal number concentration.


2015 ◽  
Vol 15 (21) ◽  
pp. 12327-12344 ◽  
Author(s):  
A. G. Feofilov ◽  
C. J. Stubenrauch ◽  
J. Delanoë

Abstract. In this article, we discuss the shape of ice water content (IWC) vertical profiles in high ice clouds and its effect on their radiative properties, both in short- and in long-wave bands (SW and LW). Based on the analysis of collocated satellite data, we propose a minimal set of primitive shapes (rectangular, isosceles trapezoid, lower and upper triangle), which represents the IWC profiles sufficiently well. About 75 % of all high-level ice clouds (P < 440 hPa) have an ice water path (IWP) smaller than 100 g m−2, with a 10 % smaller contribution from single layer clouds. Most IWC profiles (80 %) can be represented by a rectangular or isosceles trapezoid shape. However, with increasing IWP, the number of lower triangle profiles (IWC rises towards cloud base) increases, reaching up to 40 % for IWP values greater than 300 g m−2. The number of upper triangle profiles (IWC rises towards cloud top) is in general small and decreases with IWP, with the maximum occurrence of 15 % in cases of IWP less than 10 g m−2. We propose a statistical classification of the IWC shapes using IWP as a single parameter. We have estimated the radiative effects of clouds with the same IWP and with different IWC profile shapes for five typical atmospheric scenarios and over a broad range of IWP, cloud height, cloud vertical extent, and effective ice crystal diameter (De). We explain changes in outgoing LW fluxes at the top of the atmosphere (TOA) by the cloud thermal radiance while differences in TOA SW fluxes relate to the De vertical profile within the cloud. Absolute differences in net TOA and surface fluxes associated with these parameterized IWC profiles instead of assuming constant IWC profiles are in general of the order of 1–2 W m−2: they are negligible for clouds with IWP < 30 g m−2, but may reach 2 W m−2 for clouds with IWP > 300 W m−2.


2020 ◽  
Author(s):  
Peggy Achtert ◽  
Ewan J. O'Connor ◽  
Ian M. Brooks ◽  
Georgia Sotiropoulou ◽  
Matthew D. Shupe ◽  
...  

Abstract. This study presents Cloudnet retrievals of Arctic clouds from measurements conducted during a three-month research expedition along the Siberian shelf during summer and autumn 2014. During autumn, we find a strong reduction in the occurrence of liquid clouds and an increase for both mixed-phase and ice clouds at low levels compared to summer. About 80 % of all liquid clouds observed during the research cruise show a liquid water path below the infra-red black body limit of approximately 50 g m−2. The majority of mixed-phase and ice clouds had an ice water path below 20 g m−2. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. Changes in these parameters have little effect on the geometric thickness of liquid clouds while mixed-phase clouds during warm-air advection events are generally thinner than when such events were absent. Cloud-top temperatures are very similar for all mixed-phase clouds. However, more cases of lower cloud-top temperature were observed in the absence of warm-air advection. Profiles of liquid and ice water content are normalised with respect to cloud base and height. For liquid water clouds, the liquid water content profile reveals a strong increase with height with a maximum within the upper quarter of the clouds followed by a sharp decrease towards cloud top. Liquid water content is lowest for clouds observed below an inversion during warm-air advection events. Most mixed-phase clouds show a liquid water content profile with a very similar shape to that of liquid clouds but with lower maximum values during warm-air advection. The normalised ice water content profiles in mixed-phase clouds look different from that of liquid water content. They show a wider range in maximum values with lowest ice water content for clouds below an inversion and highest values for clouds above or extending through an inversion. The ice water content profile generally peaks at a height below the peak in the liquid water content profile – usually in the centre of the cloud, sometimes closer to cloud base, likely due to particle sublimation as the crystals fall through the cloud.


2015 ◽  
Vol 15 (12) ◽  
pp. 16325-16369 ◽  
Author(s):  
A. G. Feofilov ◽  
C. J. Stubenrauch ◽  
J. Delanoë

Abstract. In this work, we discuss the shape of ice water content (IWC) vertical profiles in high ice clouds and its effect on radiative properties of these clouds, both in short- and in long-wave bands (SW and LW). Based on the analysis of colocated satellite data, we suggest a minimal set of primitive shapes (rectangular, isosceles trapezoid, lower and upper triangle), which sufficiently well represents the IWC profiles. About 75% of all high-level ice clouds (P < 440 hPa) have an ice water path smaller than 100 g m−2, with a 10% smaller contribution from single layer clouds. Most IWC profiles (80%) can be represented by a rectangular or isosceles trapezoid shape. However, with increasing IWP, the number of lower triangle profiles (IWC rises towards cloud base) increases, reaching up to 40% for IWP values greater than 300 g m−2. The number of upper triangle profiles (IWC rises towards cloud top) is in general small and decreasing with IWP, with the maximum occurrence of 15% in cases of IWP less than 10 g m−2. We propose a statistical classification of the IWC shapes using ice water path (IWP) as a single parameter. We have estimated the radiative effects of clouds with the same IWP and with different IWC profile shapes for five typical atmospheric scenarios and over a broad range of IWP, cloud height, cloud vertical extent, and effective ice crystal diameter (De). We explain changes in outgoing LW fluxes at the top of the atmosphere (TOA) by the cloud thermal radiance while differences in TOA SW fluxes relate to the De vertical profile within the cloud. Absolute differences in net TOA and surface fluxes associated with these parameterized IWC profiles instead of assuming constant IWC profiles are in general of the order of 1–2 W m−2: they are negligible for clouds with IWP < 30 g m−2, but may reach 2 W m−2 for clouds with IWP >300 W m−2.


2021 ◽  
Vol 14 (7) ◽  
pp. 5029-5047
Author(s):  
Florian Ewald ◽  
Silke Groß ◽  
Martin Wirth ◽  
Julien Delanoë ◽  
Stuart Fox ◽  
...  

Abstract. Ice clouds and their effect on earth's radiation budget are one of the largest sources of uncertainty in climate change predictions. The uncertainty in predicting ice cloud feedbacks in a warming climate arises due to uncertainties in measuring and explaining their current optical and microphysical properties as well as from insufficient knowledge about their spatial and temporal distribution. This knowledge can be significantly improved by active remote sensing, which can help to explore the vertical profile of ice cloud microphysics, such as ice particle size and ice water content. This study focuses on the well-established variational approach VarCloud to retrieve ice cloud microphysics from radar–lidar measurements. While active backscatter retrieval techniques surpass the information content of most passive, vertically integrated retrieval techniques, their accuracy is limited by essential assumptions about the ice crystal shape. Since most radar–lidar retrieval algorithms rely heavily on universal mass–size relationships to parameterize the prevalent ice particle shape, biases in ice water content and ice water path can be expected in individual cloud regimes. In turn, these biases can lead to an erroneous estimation of the radiative effect of ice clouds. In many cases, these biases could be spotted and corrected by the simultaneous exploitation of measured solar radiances. The agreement with measured solar radiances is a logical prerequisite for an accurate estimation of the radiative effect of ice clouds. To this end, this study exploits simultaneous radar, lidar, and passive measurements made on board the German High Altitude and Long Range Research Aircraft. By using the ice clouds derived with VarCloud as an input to radiative transfer calculations, simulated solar radiances are compared to measured solar radiances made above the actual clouds. This radiative closure study is done using different ice crystal models to improve the knowledge of the prevalent ice crystal shape. While in one case aggregates were capable of reconciling radar, lidar, and solar radiance measurements, this study also analyses a more problematic case for which no radiative closure could be achieved. In this case, collocated in situ measurements indicate that the lack of closure may be linked to unexpectedly high values of the ice crystal number density.


2020 ◽  
Vol 20 (23) ◽  
pp. 14983-15002
Author(s):  
Peggy Achtert ◽  
Ewan J. O'Connor ◽  
Ian M. Brooks ◽  
Georgia Sotiropoulou ◽  
Matthew D. Shupe ◽  
...  

Abstract. This study presents Cloudnet retrievals of Arctic clouds from measurements conducted during a 3-month research expedition along the Siberian shelf during summer and autumn 2014. During autumn, we find a strong reduction in the occurrence of liquid clouds and an increase for both mixed-phase and ice clouds at low levels compared to summer. About 80 % of all liquid clouds observed during the research cruise show a liquid water path below the infrared black body limit of approximately 50 g m−2. The majority of mixed-phase and ice clouds had an ice water path below 20 g m−2. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. Changes in these parameters have little effect on the geometric thickness of liquid clouds while mixed-phase clouds during warm-air advection events are generally thinner than when such events were absent. Cloud-top temperatures are very similar for all mixed-phase clouds. However, more cases of lower cloud-top temperature were observed in the absence of warm-air advection. Profiles of liquid and ice water content are normalized with respect to cloud base and height. For liquid water clouds, the liquid water content profile reveals a strong increase with height with a maximum within the upper quarter of the clouds followed by a sharp decrease towards cloud top. Liquid water content is lowest for clouds observed below an inversion during warm-air advection events. Most mixed-phase clouds show a liquid water content profile with a very similar shape to that of liquid clouds but with lower maximum values during events with warm air above the planetary boundary layer. The normalized ice water content profiles in mixed-phase clouds look different from those of liquid water content. They show a wider range in maximum values with the lowest ice water content for clouds below an inversion and the highest values for clouds above or extending through an inversion. The ice water content profile generally peaks at a height below the peak in the liquid water content profile – usually in the centre of the cloud, sometimes closer to cloud base, likely due to particle sublimation as the crystals fall through the cloud.


2008 ◽  
Vol 47 (9) ◽  
pp. 2487-2495 ◽  
Author(s):  
Lawrence D. Carey ◽  
Jianguo Niu ◽  
Ping Yang ◽  
J. Adam Kankiewicz ◽  
Vincent E. Larson ◽  
...  

Abstract The microphysical properties of mixed-phase altocumulus clouds are investigated using in situ airborne measurements acquired during the ninth Cloud Layer Experiment (CLEX-9) over a midlatitude location. Approximately ⅔ of the sampled profiles are supercooled liquid–topped altocumulus clouds characterized by mixed-phase conditions. The coexistence of measurable liquid water droplets and ice crystals begins at or within tens of meters of cloud top and extends down to cloud base. Ice virga is found below cloud base. Peak liquid water contents occur at or near cloud top while peak ice water contents occur in the lower half of the cloud or in virga. The estimation of ice water content from particle size data requires that an assumption be made regarding the particle mass–dimensional relation, resulting in potential error on the order of tens of percent. The highest proportion of liquid is typically found in the coldest (top) part of the cloud profile. This feature of the microphysical structure for the midlatitude mixed-phase altocumulus clouds is similar to that reported for mixed-phase clouds over the Arctic region. The results obtained for limited cases of midlatitude mixed-phase clouds observed during CLEX-9 may have an implication for the study of mixed-phase cloud microphysics, satellite remote sensing applications, and the parameterization of mixed-phase cloud radiative properties in climate models.


2016 ◽  
Vol 16 (16) ◽  
pp. 10609-10620 ◽  
Author(s):  
Johannes Bühl ◽  
Patric Seifert ◽  
Alexander Myagkov ◽  
Albert Ansmann

Abstract. An analysis of the Cloudnet data set collected at Leipzig, Germany, with special focus on mixed-phase layered clouds is presented. We derive liquid- and ice-water content together with vertical motions of ice particles falling through cloud base. The ice mass flux is calculated by combining measurements of ice-water content and particle Doppler velocity. The efficiency of heterogeneous ice formation and its impact on cloud lifetime is estimated for different cloud-top temperatures by relating the ice mass flux and the liquid-water content at cloud top. Cloud radar measurements of polarization and Doppler velocity indicate that ice crystals formed in mixed-phase cloud layers with a geometrical thickness of less than 350 m are mostly pristine when they fall out of the cloud.


Sign in / Sign up

Export Citation Format

Share Document