ice water path
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 21 (6) ◽  
pp. 4285-4318
Author(s):  
Harald Rybka ◽  
Ulrike Burkhardt ◽  
Martin Köhler ◽  
Ioanna Arka ◽  
Luca Bugliaro ◽  
...  

Abstract. Current state-of-the-art regional numerical weather prediction (NWP) models employ kilometer-scale horizontal grid resolutions, thereby simulating convection within the grey zone. Increasing resolution leads to resolving the 3D motion field and has been shown to improve the representation of clouds and precipitation. Using a hectometer-scale model in forecasting mode on a large domain therefore offers a chance to study processes that require the simulation of the 3D motion field at small horizontal scales, such as deep summertime moist convection, a notorious problem in NWP. We use the ICOsahedral Nonhydrostatic weather and climate model in large-eddy simulation mode (ICON-LEM) to simulate deep moist convection and distinguish between scattered, large-scale dynamically forced, and frontal convection. We use different ground- and satellite-based observational data sets, which supply information on ice water content and path, ice cloud cover, and cloud-top height on a similar scale as the simulations, in order to evaluate and constrain our model simulations. We find that the timing and geometric extent of the convectively generated cloud shield agree well with observations, while the lifetime of the convective anvil was, at least in one case, significantly overestimated. Given the large uncertainties of individual ice water path observations, we use a suite of observations in order to better constrain the simulations. ICON-LEM simulates a cloud ice water path that lies between the different observational data sets, but simulations appear to be biased towards a large frozen water path (all frozen hydrometeors). Modifications of parameters within the microphysical scheme have little effect on the bias in the frozen water path and the longevity of the anvil. In particular, one of our convective days appeared to be very sensitive to the initial and boundary conditions, which had a large impact on the convective triggering but little impact on the high frozen water path and long anvil lifetime bias. Based on this limited set of sensitivity experiments, the evolution of locally forced convection appears to depend more on the uncertainty of the large-scale dynamical state based on data assimilation than of microphysical parameters. Overall, we judge ICON-LEM simulations of deep moist convection to be very close to observations regarding the timing, geometrical structure, and cloud ice water path of the convective anvil, but other frozen hydrometeors, in particular graupel, are likely overestimated. Therefore, ICON-LEM supplies important information for weather forecasting and forms a good basis for parameterization development based on physical processes or machine learning.


2021 ◽  
Vol 13 (4) ◽  
pp. 735
Author(s):  
Lei Liu ◽  
Chensi Weng ◽  
Shulei Li ◽  
Letu Husi ◽  
Shuai Hu ◽  
...  

Ice clouds play a critical role in the balance of the earth–atmosphere radiation system, but there are some limitations in the existing remote sensing methods for ice clouds. Terahertz wave is expected to be the best waveband for retrieving ice clouds, with terahertz wavelengths in the order of the size of typical ice cloud particles. An inversion method for the remote sensing of ice clouds at terahertz wavelengths based on genetic algorithm is proposed in this paper. First, suitable channel sets in the terahertz band, which are mainly a combination of absorption lines and window regions, are determined. Then, to improve the efficiency of the generation of the retrieval database, based on the brightness temperature simulated by the atmospheric radiative transfer simulator (ARTS) for different cloud parameters, a fast forward operator is constructed using three-dimensional interpolation to simulate the brightness temperature difference between clear sky and a cloudy scene. Finally, an inversion model to retrieve the ice cloud base height, the effective particle diameter and the ice water path is established based on the genetic algorithm, and an analysis of the inversion errors is performed. The results show that the forward operator, constructed by the nearest interpolation, can accurately calculate the brightness temperature difference at a high speed. The proposed inversion method at terahertz wavelengths based on the genetic algorithm can achieve the expected scientific requirement. The absolute error of the cloud height is around 0.2 km, and the absolute error of the low ice water path (below 20 g/m2) is small, while the relative error of the high ice water path is generally maintained at around 10%, and the absolute error of the effective particle diameter is mostly around 4 μm.


2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


2020 ◽  
Author(s):  
Harald Rybka ◽  
Ulrike Burkhardt ◽  
Martin Köhler ◽  
Ioanna Arka ◽  
Luca Bugliaro ◽  
...  

Abstract. Current state of the art regional numerical weather prediction (NWP) models employ kilometre scale horizontal grid resolutions thereby simulating convection within its grey-zone. Increasing resolution leads to resolving the 3D motion field and has been shown to improve the representation of clouds and precipitation. Using a hectometer-scale model in forecasting mode on a large domain therefore offers a chance to study processes that require the simulation of the 3D motion field at small horizontal scales, such as deep summertime moist convection, a notorious problem in NWP. We use the Icosahedral Nonhydrostatic weather and climate model in large-eddy simulation mode (ICON-LEM) to simulate deep moist convection distinguishing between scattered, large scale dynamically forced and frontal convection. We use different ground and satellite based observational data sets, that supply information on ice water content and path, ice cloud cover and cloud top height on a similar scale as the simulations, in order to evaluate and constrain our model simulations. We find that the timing and geometric extent of the convectively generated cloud shield agrees well with observations while the life time of the convective anvil was, at least in one case, significantly overestimated. Given the large uncertainties of individual ice water path observations, we use a suite of observations in order to better constrain the simulations. ICON-LEM simulates cloud ice water path that lies in-between the different observational data sets but simulations appear to be biased towards a large frozen water path (all frozen hydrometeors). The bias in frozen water path and the longevity of the anvil are little affected by modifications of parameters within the microphysical scheme. In particular one of our convective days appeared to be very sensitive to the initial and boundary conditions which had a large impact on the convective triggering, but little impact on the high frozen water path and long anvil life time bias. Based on this limited set of sensitivity experiments, the evolution of locally forced convection appears to depend more on the uncertainty of the large-scale dynamical state based on data assimilation than of microphysical parameters. Overall, we judge ICON-LEM simulations of deep moist convection to be very close to observations regarding timing, geometrical structure and cloud ice water path of the convective anvil, but other frozen hydrometeors, in particular graupel, are likely overestimated. Therefore, ICON-LEM supplies important information for weather forecasting and forms a good basis for parameterization development based on physical processes or machine learning.


2020 ◽  
Vol 12 (9) ◽  
pp. 1496
Author(s):  
Marco Ridolfi ◽  
Samuele Del Bianco ◽  
Alessio Di Roma ◽  
Elisa Castelli ◽  
Claudio Belotti ◽  
...  

FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) has been approved to be the ninth Earth Explorer mission of the European Space Agency. The mission is scheduled for launch on a Polar satellite in the 2025–2026 time frame. The core FORUM instrument is a Fourier Transform Spectrometer measuring, with very high accuracy, the upwelling spectral radiance, from 100 to 1600 cm − 1 (from 100 to 6.25 microns in wavelength), thus covering the Far-Infrared (FIR), and a Mid-Infrared (MIR) portion of the spectrum emitted by the Earth. FORUM will fly in loose formation with the MetOp-SG-1A satellite, hosting the Infrared Atmospheric Sounding Interferometer – New Generation (IASI-NG). IASI-NG will measure only the MIR part of the upwelling atmospheric spectrum, from 645 to 2760 cm − 1 (from 15.5 to 3.62 microns in wavelength), thus, the matching FORUM measurements will supply the missing FIR complement. Together, the two missions will provide, for the first time, a spectrally resolved measurement of the full Earth emitted thermal spectrum. The calibrated spectral radiance will be, on its own, the main product of the FORUM mission, however, the radiances will also be processed up to Level 2, to determine the vertical profile of water vapour, surface spectral emissivity and cloud parameters in the case of cloudy atmospheres. In this paper we assess the performance of the FORUM Level 2 products based on clear-sky simulated retrievals and we study how the FORUM and IASI-NG matching measurements can be fused in a synergistic retrieval scheme, to provide improved Level 2 products. Considering only the measurement noise and the systematic calibration error components, we find the following figures for the synergistic FORUM and IASI-NG retrieval products. In the upper troposphere/lower stratosphere region, individual water vapour profiles can be retrieved with 1 km vertical sampling and an error ranging from 10% to 15%. In the range from 300 to 600 cm − 1 , surface spectral emissivity can be retrieved with an absolute error as small as 0.001 in dry Polar atmospheres. Ice cloud parameters such as ice water path and cloud top height can be retrieved with errors smaller than 10% and 1 km, respectively, for ice water path values ranging from 0.2 to 60 g/m 2 .


2020 ◽  
Vol 20 (6) ◽  
pp. 3459-3481 ◽  
Author(s):  
Rosa Gierens ◽  
Stefan Kneifel ◽  
Matthew D. Shupe ◽  
Kerstin Ebell ◽  
Marion Maturilli ◽  
...  

Abstract. Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Ålesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.


2020 ◽  
Vol 13 (1) ◽  
pp. 53-71 ◽  
Author(s):  
Patrick Eriksson ◽  
Bengt Rydberg ◽  
Vinia Mattioli ◽  
Anke Thoss ◽  
Christophe Accadia ◽  
...  

Abstract. The second generation of the EUMETSAT Polar System (EPS-SG) will include the Ice Cloud Imager (ICI), the first operational sensor covering sub-millimetre wavelengths. Three copies of ICI will be launched that together will give a measurement time series exceeding 20 years. Due to the novelty of ICI, preparing the data processing is especially important and challenging. This paper focuses on activities related to the operational product planned, but also presents basic technical characteristics of the instrument. A retrieval algorithm based on Bayesian Monte Carlo integration has been developed. The main retrieval quantities are ice water path (IWP), mean mass height (Zm) and mean mass diameter (Dm). A novel part of the algorithm is that it fully presents the inversion as a description of the posterior probability distribution. This is preferred for ICI as its retrieval errors do not always follow Gaussian statistics. A state-of-the-art retrieval database is used to test the algorithm and to give an updated estimate of the retrieval performance. The degrees of freedom in measured radiances, and consequently the retrieval precision, vary with cloud situation. According to present simulations, IWP, Zm and Dm can be determined with 90 % confidence at best inside 50 %, 700 m and 50 µm, respectively. The retrieval requires that the data from the 13 channels of ICI are remapped to a common footprint. First estimates of the errors introduced by this remapping are also presented.


2019 ◽  
Author(s):  
Patrick Eriksson ◽  
Bengt Rydberg ◽  
Vinia Mattioli ◽  
Anke Thoss ◽  
Christophe Accadia ◽  
...  

Abstract. The second generation of the EUMETSAT Polar System (EPS-SG) will include the Ice Cloud Imager (ICI), the first operational sensor covering sub-millimetre wavelengths. Three copies of ICI will be launched that together will give a measurement series exceeding 20 years. Due to the novelty of ICI, preparing the data processing is especially important and challenging. This paper focuses on activities related to the operational product planned, but also presents basic technical characteristics of the instrument. A retrieval algorithm based on Bayesian Monte Carlo integration has been developed. The main retrieval quantities are ice water path (IWP), mean mass height (Zm) and mean mass diameter (Dm). A novel part of the algorithm is to fully present the inversion as a description of the posterior probability distribution. This is to prefer for ICI as its retrieval errors not always follow Gaussian statistics. A state-of-the-art retrieval database is used to test the algorithm and to give an updated estimate of the retrieval performance. The degrees of freedom in measured radiances, and consequently the retrieval precision, vary with cloud situation. According to present simulations, IWP, Zm and Dm can be determined with 90 % confidence at best inside 50 %, 700 m and 50 um, respectively. The retrieval requires that the data from the thirteen channels of ICI are remapped to a common footprint. First estimates of the errors introduced by this remapping are also presented.


Sign in / Sign up

Export Citation Format

Share Document