The Potential of a Spaceborne Cloud Radar for the Detection of Stratocumulus Clouds

1997 ◽  
Vol 36 (6) ◽  
pp. 676-687 ◽  
Author(s):  
Neil I. Fox ◽  
Anthony J. Illingworth

Abstract The radar reflectivity and liquid water content of stratocumulus clouds have been computed from cloud droplet spectra recorded during more than 4000 km of cloud penetrations by an aircraft, and the probability of detecting various values of liquid water content as a function of the radar sensitivity threshold has been derived. The goal of the study is to specify the sensitivity required for any future spaceborne cloud radar. In extensive marine stratocumulus deeper than about 200 m, occasional but ubiquitous drizzle-sized droplets of up to 200 μm dominate the radar return and increase it by between 10 and 20 dB above the cloud droplet contribution to the return, making radar detection easier, although the concentration of the drizzle drops is so low that they have no effect on the liquid water content or effective radius. These occasional drizzle-sized droplets are present throughout the vertical and horizontal extent of such clouds but should evaporate within 200 m of cloud base. On occasion, the drizzle can fall farther and may yield a false measurement of cloud-base altitude, but such cases can be recognized by examining the vertical profile of reflectivity. A radar sensitivity threshold of −30 dBZ would detect 80%, 85%, and 90% of the marine stratocumulus, with a liquid water content above 0.025, 0.05, and 0.075 g m−3, respectively. Because nonprecipitating drizzle droplets are rare in continental stratocumulus, the equivalent figures are reduced to 38%, 33%, and 25%. Improving the sensitivity to −40 dBZ increases detection probability to nearly 100% for both types of cloud. These figures are based on the assumption that the cloud is deep enough to fill the radar pulse volume.

2014 ◽  
Vol 7 (9) ◽  
pp. 9917-9992 ◽  
Author(s):  
D. P. Donovan ◽  
H. Klein Baltink ◽  
J. S. Henzing ◽  
S. R. de Roode ◽  
A. P. Siebesma

Abstract. The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. liquid water content) and microphysical (e.g. effective radius) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud-base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2–3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.


2019 ◽  
Vol 19 (3) ◽  
pp. 1413-1437 ◽  
Author(s):  
Yajuan Duan ◽  
Markus D. Petters ◽  
Ana P. Barros

Abstract. A new cloud parcel model (CPM) including activation, condensation, collision–coalescence, and lateral entrainment processes is used to investigate aerosol–cloud interactions (ACIs) in cumulus development prior to rainfall onset. The CPM was applied with surface aerosol measurements to predict the vertical structure of cloud development at early stages, and the model results were evaluated against airborne observations of cloud microphysics and thermodynamic conditions collected during the Integrated Precipitation and Hydrology Experiment (IPHEx) in the inner region of the southern Appalachian Mountains (SAM). Sensitivity analysis was conducted to examine the model response to variations in key ACI physiochemical parameters and initial conditions. The CPM sensitivities mirror those found in parcel models without entrainment and collision–coalescence, except for the evolution of the droplet spectrum and liquid water content with height. Simulated cloud droplet number concentrations (CDNCs) exhibit high sensitivity to variations in the initial aerosol concentration at cloud base, but weak sensitivity to bulk aerosol hygroscopicity. The condensation coefficient ac plays a governing role in determining the evolution of CDNC, liquid water content (LWC), and cloud droplet spectra (CDS) in time and with height. Lower values of ac lead to higher CDNCs and broader CDS above cloud base, and higher maximum supersaturation near cloud base. Analysis of model simulations reveals that competitive interference among turbulent dispersion, activation, and droplet growth processes modulates spectral width and explains the emergence of bimodal CDS and CDNC heterogeneity in aircraft measurements from different cloud regions and at different heights. Parameterization of nonlinear interactions among entrainment, condensational growth, and collision–coalescence processes is therefore necessary to simulate the vertical structures of CDNCs and CDSs in convective clouds. Comparisons of model predictions with data suggest that the representation of lateral entrainment remains challenging due to the spatial heterogeneity of the convective boundary layer and the intricate 3-D circulations in mountainous regions.


2020 ◽  
Vol 20 (23) ◽  
pp. 15247-15263 ◽  
Author(s):  
Cristofer Jimenez ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
David Donovan ◽  
Aleksey Malinka ◽  
...  

Abstract. In a series of two articles, a novel, robust, and practicable lidar approach is presented that allows us to derive microphysical properties of liquid-water clouds (cloud extinction coefficient, droplet effective radius, liquid-water content, cloud droplet number concentration) at a height of 50–100 m above the cloud base. The temporal resolution of the observations is on the order of 30–120 s. Together with the aerosol information (aerosol extinction coefficients, cloud condensation nucleus concentration) below the cloud layer, obtained with the same lidar, in-depth aerosol–cloud interaction studies can be performed. The theoretical background and the methodology of the new cloud lidar technique is outlined in this article (Part 1), and measurement applications are presented in a companion publication (Part 2) (Jimenez et al., 2020a). The novel cloud retrieval technique is based on lidar observations of the volume linear depolarization ratio at two different receiver fields of view (FOVs). Extensive simulations of lidar returns in the multiple scattering regime were conducted to investigate the capabilities of a dual-FOV polarization lidar to measure cloud properties and to quantify the information content in the measured depolarization features regarding the basic retrieval parameters (cloud extinction coefficient, droplet effective radius). Key simulation results and the overall data analysis scheme developed to obtain the aerosol and cloud products are presented.


2015 ◽  
Vol 8 (1) ◽  
pp. 237-266 ◽  
Author(s):  
D. P. Donovan ◽  
H. Klein Baltink ◽  
J. S. Henzing ◽  
S. R. de Roode ◽  
A. P. Siebesma

Abstract. The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple scattering is well known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field of view) as well as the cloud macrophysical (e.g. cloud-base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud-droplet number density in the cloud-base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up tables produced using extensive lidar Monte Carlo (MC) multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation (LES) model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2–3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud-droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.


2019 ◽  
Vol 76 (2) ◽  
pp. 533-560 ◽  
Author(s):  
Pavel Khain ◽  
Reuven Heiblum ◽  
Ulrich Blahak ◽  
Yoav Levi ◽  
Harel Muskatel ◽  
...  

Abstract Shallow convection is a subgrid process in cloud-resolving models for which their grid box is larger than the size of small cumulus clouds (Cu). At the same time such Cu substantially affect radiation properties and thermodynamic parameters of the low atmosphere. The main microphysical parameters used for calculation of radiative properties of Cu in cloud-resolving models are liquid water content (LWC), effective droplet radius, and cloud fraction (CF). In this study, these parameters of fields of small, warm Cu are calculated using large-eddy simulations (LESs) performed using the System for Atmospheric Modeling (SAM) with spectral bin microphysics. Despite the complexity of microphysical processes, several fundamental properties of Cu were found. First, despite the high variability of LWC and droplet concentration within clouds and between different clouds, the volume mean and effective radii per specific level vary only slightly. Second, the values of effective radius are close to those forming during adiabatic ascent of air parcels from cloud base. These findings allow for characterization of a cloud field by specific vertical profiles of effective radius and of mean liquid water content, which can be calculated using the theoretical profile of adiabatic liquid water content and the droplet concentration at cloud base. Using the results of these LESs, a simple parameterization of cloud-field-averaged vertical profiles of effective radius and of liquid water content is proposed for different aerosol and thermodynamic conditions. These profiles can be used for calculation of radiation properties of Cu fields in large-scale models. The role of adiabatic processes in the formation of microstructure of Cu is discussed.


2020 ◽  
Author(s):  
Cristofer Jimenez ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
David Donovan ◽  
Aleksey Malinka ◽  
...  

Abstract. In a series of two articles, a novel, robust, and practicable lidar approach is presented that allows us to derive microphysical properties of liquid-water clouds (cloud extinction coefficient, droplet effective radius, liquid-water content, cloud droplet number concentration) at a height of 50–100 m above cloud base. The temporal resolution of the observations is on the order of 30–120 sec. Together with the aerosol information (aerosol extinction coefficients, cloud condensation nucleus concentration) below the cloud layer, obtained with the same lidar, in-depth aerosol-cloud interaction studies can be performed. The theoretical background and the methodology of the new cloud lidar technique is outlined in this article (part 1), measurement applications are presented in an companion publication (part 2). The novel cloud retrieval technique is based on lidar observations of the volume linear depolarization ratio at two different receiver field-of-views (FOVs). Extensive simulations of lidar returns in the multiple scattering regime were conducted to investigate the capabilities of a dual-FOV polarization lidar to measure cloud properties and to quantify the information content in the measured depolarization features regarding the basic retrieval parameters (cloud extinction coefficient, droplet effective radius). Key simulation results and the developed overall data analysis scheme to obtain the aerosol and cloud products are presented.


2015 ◽  
Vol 15 (1) ◽  
pp. 47-76 ◽  
Author(s):  
E. Jung ◽  
B. A. Albrecht ◽  
H. H. Jonsson ◽  
Y.-C. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1–10 μm diameter salt particles (salt powder) were released from an aircraft while flying near cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30–60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h−1, and liquid water path decreased from about 52 to 43 g m−2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10−2 to 10−4 cm−3 resulted in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.


2015 ◽  
Vol 15 (10) ◽  
pp. 5645-5658 ◽  
Author(s):  
E. Jung ◽  
B. A. Albrecht ◽  
H. H. Jonsson ◽  
Y.-C. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1–10 μm diameter salt particles (salt powder) were released from an aircraft while flying near the cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30–60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 μm) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h−1, and the liquid water path decreased from about 52 to 43 g m−2. Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10−2 to 10-4 cm−3 resulted in a four-fold increase in the cloud-base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.


Sign in / Sign up

Export Citation Format

Share Document