scholarly journals Data Quality Assessment and the Long-Term Trend of Ground Solar Radiation in China

2008 ◽  
Vol 47 (4) ◽  
pp. 1006-1016 ◽  
Author(s):  
Guang-Yu Shi ◽  
Tadahiro Hayasaka ◽  
Atsumu Ohmura ◽  
Zhi-Hua Chen ◽  
Biao Wang ◽  
...  

Abstract Solar radiation is one of the most important factors affecting climate and the environment. Routine measurements of irradiance are valuable for climate change research because of long time series and areal coverage. In this study, a set of quality assessment (QA) algorithms is used to test the quality of daily solar global, direct, and diffuse radiation measurements taken at 122 observatories in China during 1957–2000. The QA algorithms include a physical threshold test (QA1), a global radiation sunshine duration test (QA2), and a standard deviation test applied to time series of annually averaged solar global radiation (QA3). The results show that the percentages of global, direct, and diffuse solar radiation data that fail to pass QA1 are 3.07%, 0.01%, and 2.52%, respectively; the percentages of global solar radiation data that fail to pass the QA2 and QA3 are 0.77% and 0.49%, respectively. The method implemented by the Global Energy Balance Archive is also applied to check the data quality of solar radiation in China. Of the 84 stations with a time series longer that 20 yr, suspect data at 35 of the sites were found. Based on data that passed the QA tests, trends in ground solar radiation and the effect of the data quality assessment on the trends are analyzed. There is a decrease in ground solar global and direct radiation in China over the years under study. Although the quality assessment process has significant effects on the data from individual stations and/or time periods, it does not affect the long-term trends in the data.

Author(s):  
Syed Mustafa Ali ◽  
Farah Naureen ◽  
Arif Noor ◽  
Maged Kamel N. Boulos ◽  
Javariya Aamir ◽  
...  

Background Increasingly, healthcare organizations are using technology for the efficient management of data. The aim of this study was to compare the data quality of digital records with the quality of the corresponding paper-based records by using data quality assessment framework. Methodology We conducted a desk review of paper-based and digital records over the study duration from April 2016 to July 2016 at six enrolled TB clinics. We input all data fields of the patient treatment (TB01) card into a spreadsheet-based template to undertake a field-to-field comparison of the shared fields between TB01 and digital data. Findings A total of 117 TB01 cards were prepared at six enrolled sites, whereas just 50% of the records (n=59; 59 out of 117 TB01 cards) were digitized. There were 1,239 comparable data fields, out of which 65% (n=803) were correctly matched between paper based and digital records. However, 35% of the data fields (n=436) had anomalies, either in paper-based records or in digital records. 1.9 data quality issues were calculated per digital patient record, whereas it was 2.1 issues per record for paper-based record. Based on the analysis of valid data quality issues, it was found that there were more data quality issues in paper-based records (n=123) than in digital records (n=110). Conclusion There were fewer data quality issues in digital records as compared to the corresponding paper-based records. Greater use of mobile data capture and continued use of the data quality assessment framework can deliver more meaningful information for decision making.


2019 ◽  
pp. 469-487
Author(s):  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Padraig Corcoran ◽  
Amerah Alghanim

Nowadays an ever-increasing number of applications require complete and up-to-date spatial data, in particular maps. However, mapping is an expensive process and the vastness and dynamics of our world usually render centralized and authoritative maps outdated and incomplete. In this context crowd-sourced maps have the potential to provide a complete, up-to-date, and free representation of our world. However, the proliferation of such maps largely remains limited due to concerns about their data quality. While most of the current data quality assessment mechanisms for such maps require referencing to authoritative maps, we argue that such referencing of a crowd-sourced spatial database is ineffective. Instead we focus on the use of machine learning techniques that we believe have the potential to not only allow the assessment but also to recommend the improvement of the quality of crowd-sourced maps without referencing to external databases. This chapter gives an overview of these approaches.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Sophia Crossen

ObjectiveTo explore the quality of data submitted once a facility is movedinto an ongoing submission status and address the importance ofcontinuing data quality assessments.IntroductionOnce a facility meets data quality standards and is approved forproduction, an assumption is made that the quality of data receivedremains at the same level. When looking at production data qualityreports from various states generated using a SAS data qualityprogram, a need for production data quality assessment was identified.By implementing a periodic data quality update on all productionfacilities, data quality has improved for production data as a whole andfor individual facility data. Through this activity several root causesof data quality degradation have been identified, allowing processesto be implemented in order to mitigate impact on data quality.MethodsMany jurisdictions work with facilities during the onboardingprocess to improve data quality. Once a certain level of data qualityis achieved, the facility is moved into production. At this point thejurisdiction generally assumes that the quality of the data beingsubmitted will remain fairly constant. To check this assumption inKansas, a SAS Production Report program was developed specificallyto look at production data quality.A legacy data set is downloaded from BioSense production serversby Earliest Date in order to capture all records for visits which occurredwithin a specified time frame. This data set is then run through a SASdata quality program which checks specific fields for completenessand validity and prints a report on counts and percentages of null andinvalid values, outdated records, and timeliness of record submission,as well as examples of records from visits containing these errors.A report is created for the state as a whole, each facility, EHR vendor,and HIE sending data to the production servers, with examplesprovided only by facility. The facility, vendor, and HIE reportsinclude state percentages of errors for comparison.The Production Report was initially run on Kansas data for thefirst quarter of 2016 followed by consultations with facilities on thefindings. Monthly checks were made of data quality before and afterfacilities implemented changes. An examination of Kansas’ resultsshowed a marked decrease in data quality for many facilities. Everyfacility had at least one area in need of improvement.The data quality reports and examples were sent to every facilitysending production data during the first quarter attached to an emailrequesting a 30-60 minute call with each to go over the report. Thiscall was deemed crucial to the process since it had been over a year,and in a few cases over two years, since some of the facilities hadlooked at data quality and would need a review of the findings andall requirements, new and old. Ultimately, over half of all productionfacilities scheduled a follow-up call.While some facilities expressed some degree of trepidation, mostfacilities were open to revisiting data quality and to making requestedimprovements. Reasons for data quality degradation included updatesto EHR products, change of EHR product, work flow issues, engineupdates, new requirements, and personnel turnover.A request was made of other jurisdictions (including Arizona,Nevada, and Illinois) to look at their production data using the sameprogram and compare quality. Data was pulled for at least one weekof July 2016 by Earliest Date.ResultsMonthly reports have been run on Kansas Production data bothbefore and after the consultation meetings which indicate a markedimprovement in both completeness of required fields and validityof values in those fields. Data for these monthly reports was againselected by Earliest Date.ConclusionsIn order to ensure production data continues to be of value forsyndromic surveillance purposes, periodic data quality assessmentsshould continue after a facility reaches ongoing submission status.Alterations in process include a review of production data at leasttwice per year with a follow up data review one month later to confirmadjustments have been correctly implemented.


2017 ◽  
Vol 5 (1) ◽  
pp. 47-54
Author(s):  
Puguh Ika Listyorini ◽  
Mursid Raharjo ◽  
Farid Agushybana

Data are the basis to make a decision and policy. The quality of data is going to produce a better policy. The quality assessment methods nowadays do not include all indicators of data quality. If the indicators or assessment criteria in the quality assessment methods are more complete, the level of assessment methods of the data will be higher. The purpose of this study is to develop the method of independent assessment of routine data quality in Surakarta Health Department which is previously performed using the data quality assessment of PMKDR and HMN methods firstly.The design of this study is research and development (R&D) that has been modified into seven steps, namely formulating potential problems, collecting the data, designing the product, validating the design, fixing the design, testing the product, and fixing the product. The subjects consisted of 19 respondents who are managers of data in Surakarta Health Department. Data analysis method used is content analysis.The assessment results show that, in the pilot phase of the development of data quality assessment methods which have been developed, it is basically successful, or it can be used. The results of the assessment of the quality of the data by the developed method is the quality of data collection which is very adequate, the quality of data accuracy which is poor, the quality of data that consistency exists but is inadequate, the quality of the actuality of the data which is very adequate, the quality of periodicity data that is inadequate, the quality of the representation of the data that is very adequate, and sorting the data which is very adequate.It needs a commitment from Surakarta Health Department to take advantage of the development of these methods to assess the quality of data to support the availability of information, decision-making and planning of health programs. It also calls for the development of this research by conducting all stages of the steps of R&D so that the final result of the method development will be better.


Author(s):  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Padraig Corcoran ◽  
Amerah Alghanim

Nowadays an ever-increasing number of applications require complete and up-to-date spatial data, in particular maps. However, mapping is an expensive process and the vastness and dynamics of our world usually render centralized and authoritative maps outdated and incomplete. In this context crowd-sourced maps have the potential to provide a complete, up-to-date, and free representation of our world. However, the proliferation of such maps largely remains limited due to concerns about their data quality. While most of the current data quality assessment mechanisms for such maps require referencing to authoritative maps, we argue that such referencing of a crowd-sourced spatial database is ineffective. Instead we focus on the use of machine learning techniques that we believe have the potential to not only allow the assessment but also to recommend the improvement of the quality of crowd-sourced maps without referencing to external databases. This chapter gives an overview of these approaches.


2017 ◽  
Vol 23 (1) ◽  
pp. 641-650 ◽  
Author(s):  
Clemens Arbesser ◽  
Florian Spechtenhauser ◽  
Thomas Muhlbacher ◽  
Harald Piringer

Sign in / Sign up

Export Citation Format

Share Document