Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans

2008 ◽  
Vol 47 (6) ◽  
pp. 1599-1618 ◽  
Author(s):  
Gregory S. Elsaesser ◽  
Christian D. Kummerow

Abstract In light of the upcoming launch of the Global Precipitation Measurement (GPM) mission, a parametric retrieval algorithm of the nonraining parameters over the global oceans is developed with the ability to accommodate all currently existing and planned spaceborne microwave window channel sensors and imagers. The physical retrieval is developed using all available sensor channels in a full optimal estimation inversion. This framework requires that retrieved parameters be physically consistent with all observed satellite radiances regardless of the sensor being used. The retrieval algorithm has been successfully applied to the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with geophysical parameter retrieval results comparable to independent studies using sensor-optimized algorithms. The optimal estimation diagnostics characterize the retrieval further, providing errors associated with each of the retrieved parameters, indicating whether the retrieved state is physically consistent with observed radiances, and yielding information on how well simulated radiances agree with observed radiances. This allows for the quantitative assessment of potential calibration issues in either the model or sensor. In addition, there is an expected, consistent response of these diagnostics based on the scene being observed, such as in the case of a raining scene, allowing for the emergence of a rainfall detection scheme providing a new capability in rainfall identification for use in passive microwave rainfall and cloud property retrievals.

2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


2008 ◽  
Vol 47 (11) ◽  
pp. 3016-3029 ◽  
Author(s):  
Shinta Seto ◽  
Takuji Kubota ◽  
Nobuhiro Takahashi ◽  
Toshio Iguchi ◽  
Taikan Oki

Abstract Seto et al. developed rain/no-rain classification (RNC) methods over land for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). In this study, the methods are modified for application to other microwave radiometers. The previous methods match TMI observations with TRMM precipitation radar (PR) observations, classify the TMI pixels into rain pixels and no-rain pixels, and then statistically summarize the observed brightness temperature at the no-rain pixels into a land surface brightness temperature database. In the modified methods, the probability distribution of brightness temperature under no-rain conditions is derived from unclassified TMI pixels without the use of PR. A test with the TMI shows that the modified (PR independent) methods are better than the RNC method developed for the Goddard profiling algorithm (GPROF; the standard algorithm for the TMI) while they are slightly poorer than corresponding previous (PR dependent) methods. M2d, one of the PR-independent methods, is applied to observations from the Advanced Microwave Scanning Radiometer for Earth Observing Satellite (AMSR-E), is evaluated for a matchup case with PR, and is evaluated for 1 yr with a rain gauge dataset in Japan. M2d is incorporated into a retrieval algorithm developed by the Global Satellite Mapping of Precipitation project to be applied for the AMSR-E. In latitudes above 30°N, the rain-rate retrieval is compared with a rain gauge dataset by the Global Precipitation Climatology Center. Without a snow mask, a large amount of false rainfall due to snow contamination occurs. Therefore, a simple snow mask using the 23.8-GHz channel is applied and the threshold of the mask is optimized. Between 30° and 60°N, the optimized snow mask forces the miss of an estimated 10% of the total rainfall.


2018 ◽  
Vol 35 (7) ◽  
pp. 1457-1470 ◽  
Author(s):  
Rachael Kroodsma ◽  
Stephen Bilanow ◽  
Darren McKague

AbstractThe Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) has been updated to a final version following the decommissioning of the TRMM satellite in April 2015. The updates are based on increased knowledge of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI updates. This paper discusses two aspects of the TMI data product that have been reanalyzed and updated: alignment and along-scan bias corrections. The TMI’s pointing accuracy is significantly improved over prior PPS versions, which used at-launch alignment values. A TMI instrument mounting offset is discovered as well as new alignment offsets for the two TMI feedhorns. The original TMI along-scan antenna temperature bias correction is found to be generally accurate over ocean, but a scene temperature-dependent correction is needed to account for edge-of-scan obstruction. These updates are incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI.


2018 ◽  
Vol 10 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ruanyu Zhang ◽  
Zhenzhan Wang ◽  
Kyle Hilburn

A rainfall retrieval algorithm for tropical cyclones (TCs) using 18.7 and 36.5 GHz of vertically and horizontally polarized brightness temperatures (Tbs) from the Microwave Radiation Imager (MWRI) is presented. The beamfilling effect is corrected based on ratios of the retrieved liquid water absorption and theoretical Mie absorption coefficients at 18.7 and 36.5 GHz. To assess the performance of this algorithm, MWRI measurements are matched with the National Snow and Ice Data Center (NSIDC) precipitation for six TCs. The comparison between MWRI and NSIDC rain rates is relatively encouraging, with a mean bias of −0.14 mm/h and an overall root-mean-square error (RMSE) of 1.99 mm/h. A comparison of pixel-to-pixel retrievals shows that MWRI retrievals are constrained to reasonable levels for most rain categories, with a minimum error of −1.1% in the 10–15 mm/h category; however, with maximum errors around −22% at the lowest (0–0.5 mm/h) and highest rain rates (25–30 mm/h). Additionally, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) Tbs are applied to retrieve rain rates to assess the sensitivity of this algorithm, with a mean bias and RMSE of 0.90 mm/h and 3.11 mm/h, respectively. For the case study of TC Maon (2011), MWRI retrievals underestimate rain rates over 6 mm/h and overestimate rain rates below 6 mm/h compared with Precipitation Radar (PR) observations on storm scales. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rainfall data provided by the Remote Sensing Systems (RSS) are applied to assess the representation of mesoscale structures in intense TCs, and they show good consistency with MWRI retrievals.


2018 ◽  
Vol 35 (6) ◽  
pp. 1181-1199 ◽  
Author(s):  
E. F. Stocker ◽  
F. Alquaied ◽  
S. Bilanow ◽  
Y. Ji ◽  
L. Jones

AbstractThe National Aeronautics and Space Administration (NASA) has always included data reprocessing as a major component of every science mission. A final reprocessing is typically a part of mission closeout (known as phase F). The Tropical Rainfall Measuring Mission (TRMM) is currently in phase F, and NASA is preparing for the last reprocessing of all the TRMM precipitation data as part of the closeout. This reprocessing includes improvements in calibration of both the TRMM Microwave Imager (TMI) and the TRMM Precipitation Radar (PR). An initial step in the version 8 reprocessing is the improvement of geolocation. The PR calibration is being updated by the Japan Aerospace Exploration Agency (JAXA) using data collected as part of the calibration of the Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Core Observatory. JAXA undertook a major effort to ensure TRMM PR and GPM Ku-band calibration is consistent.A major component of the TRMM version 8 reprocessing is to create consistent retrievals with the GPM version 05 (V05) retrievals. To this end, the TRMM version 8 reprocessing uses retrieval algorithms based on the GPM V05 algorithms. This approach ensures consistent retrievals from December 1997 (the beginning of TRMM) through the current ongoing GPM retrievals. An outcome of this reprocessing is the incorporation of TRMM data products into the GPM data suite. Incorporation also means that GPM file naming conventions and reprocessed TRMM data carry the V05 data product version. This paper describes the TRMM version 8 reprocessing, focusing on the improvements in TMI level 1 products.


2016 ◽  
Vol 33 (8) ◽  
pp. 1649-1671 ◽  
Author(s):  
Eun-Kyoung Seo ◽  
Sung-Dae Yang ◽  
Mircea Grecu ◽  
Geun-Hyeok Ryu ◽  
Guosheng Liu ◽  
...  

AbstractUsing Tropical Rainfall Measuring Mission (TRMM) observations from storms collected over the oceans surrounding East Asia, during summer, a method of creating physically consistent cloud-radiation databases to support satellite radiometer retrievals is introduced. In this method, vertical profiles of numerical model-simulated cloud and precipitation fields are optimized against TRMM radar and radiometer observations using a hybrid empirical orthogonal function (EOF)–one-dimensional variational (1DVAR) approach.The optimization is based on comparing simulated to observed radar reflectivity profiles and the corresponding passive microwave observations at the frequencies of the TRMM Microwave Imager (TMI) instrument. To minimize the discrepancies between the actual and the synthetic observations, the simulated cloud and precipitation profiles are optimized by adjusting the contents of the hydrometeors. To reduce the dimension of the hydrometeor content profiles in the optimization, multivariate relations among hydrometeor species are used.After applying the optimization method to modify the simulated clouds, the optimized cloud-radiation database has a joint distribution of reflectivity and associated brightness temperatures that is considerably closer to that observed by TRMM PR and TMI, especially at 85 GHz. This implies that the EOF–1DVAR approach can generate profiles with realistic distributions of frozen hydrometeors, such as snow and graupel. This approach may be similarly adapted to operate with the variety and capabilities of the passive microwave radiometers that compose the Global Precipitation Measurement (GPM) constellation. Furthermore, it can be extended to other oceanic regions and seasons.


2018 ◽  
Vol 10 (8) ◽  
pp. 1278 ◽  
Author(s):  
Jean-François Rysman ◽  
Giulia Panegrossi ◽  
Paolo Sanò ◽  
Anna Marra ◽  
Stefano Dietrich ◽  
...  

This paper describes a new algorithm that is able to detect snowfall and retrieve the associated snow water path (SWP), for any surface type, using the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The algorithm is tuned and evaluated against coincident observations of the Cloud Profiling Radar (CPR) onboard CloudSat. It is composed of three modules for (i) snowfall detection, (ii) supercooled droplet detection and (iii) SWP retrieval. This algorithm takes into account environmental conditions to retrieve SWP and does not rely on any surface classification scheme. The snowfall detection module is able to detect 83% of snowfall events including light SWP (down to 1 × 10−3 kg·m−2) with a false alarm ratio of 0.12. The supercooled detection module detects 97% of events, with a false alarm ratio of 0.05. The SWP estimates show a relative bias of −11%, a correlation of 0.84 and a root mean square error of 0.04 kg·m−2. Several applications of the algorithm are highlighted: Three case studies of snowfall events are investigated, and a 2-year high resolution 70°S–70°N snowfall occurrence distribution is presented. These results illustrate the high potential of this algorithm for snowfall detection and SWP retrieval using GMI.


2005 ◽  
Vol 22 (5) ◽  
pp. 497-512 ◽  
Author(s):  
Jeffrey R. McCollum ◽  
Ralph R. Ferraro

Abstract The microwave coastal rain identification procedure that has been used by NASA for over 10 yr, and also more recently by NOAA, for different instruments beginning with the Special Sensor Microwave Imager (SSM/I), is updated for use with Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer (AMSR)-[Earth Observing System (EOS)] E microwave data. Since the development of the SSM/I algorithm, a wealth of both space-based and ground-based radar-rainfall estimates have become available, and here some of these data are used with collocated TMI and AMSR-E data to improve the estimation of coastal rain areas from microwave data. Two major improvements are made. The first involves finding the conditions where positive rain rates should be estimated rather than leaving the areas without estimates as in the previous algorithm. The second is a modification to the final step of the rain identification method; previously, a straight brightness temperature cutoff was used, but this is modified to a polarization-corrected temperature criterion. These modifications are made for the TRMM version 6 product release and the third (1 September) release of AMSR-E products to the public, both in 2004. The modifications are slightly different for each of these two sensors.


2014 ◽  
Vol 31 (9) ◽  
pp. 1902-1921 ◽  
Author(s):  
Ji-Hye Kim ◽  
Mi-Lim Ou ◽  
Jun-Dong Park ◽  
Kenneth R. Morris ◽  
Mathew R. Schwaller ◽  
...  

Abstract Since 2009, the Korea Meteorological Administration (KMA) has participated in ground validation (GV) projects through international partnerships within the framework of the Global Precipitation Measurement (GPM) Mission. The goal of this work is to assess the reliability of ground-based measurements in the Korean Peninsula as a means for validating precipitation products retrieved from satellite microwave sensors, with an emphasis on East Asian precipitation. KMA has a well-developed operational weather service infrastructure composed of meteorological radars, a dense rain gauge network, and automated weather stations. Measurements from these systems, including data from four ground-based radars (GRs), were combined with satellite data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and used as a proxy for GPM GV over the Korean Peninsula. A time series of mean reflectivity differences (GR − PR) for stratiform-only and above-brightband-only data showed that the time-averaged difference fell between −2.0 and +1.0 dBZ for the four GRs used in this study. Site-specific adjustments for these relative mean biases were applied to GR reflectivities, and detailed statistical comparisons of reflectivity and rain rate between PR and bias-adjusted GR were carried out. In rain-rate comparisons, surface rain from the TRMM Microwave Imager (TMI) and the rain gauges were added and the results varied according to rain type. Bias correction has had a positive effect on GR rain rate comparing with PR and gauge rain rates. This study confirmed advance preparation for GPM GV system was optimized on the Korean Peninsula using the official framework.


2013 ◽  
Vol 14 (1) ◽  
pp. 153-170 ◽  
Author(s):  
Yu Zhang ◽  
Dong-Jun Seo ◽  
David Kitzmiller ◽  
Haksu Lee ◽  
Robert J. Kuligowski ◽  
...  

Abstract This paper assesses the accuracy of satellite quantitative precipitation estimates (QPEs) from two versions of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm relative to that of gridded gauge-only QPEs. The second version of SCaMPR uses the QPEs from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and Microwave Imager as predictands whereas the first version does not. The assessments were conducted for 22 catchments in Texas and Louisiana against National Weather Service operational multisensor QPE. Particular attention was given to the density below which SCaMPR QPEs outperform gauge-only QPEs and effects of TRMM ingest. Analyses indicate that SCaMPR QPEs can be competitive in terms of correlation and CSI against sparse gauge networks (with less than one gauge per 3200–12 000 km2) and over 1–3-h scale, but their relative strengths diminish with temporal aggregation. In addition, the major advantage of SCaMPR QPEs is its relatively low false alarm rates, whereas gauge-only QPEs exhibit better skill in detecting rainfall—though the detection skill of SCaMPR QPEs tends to improve at higher rainfall thresholds. Moreover, it was found that ingesting TRMM QPEs help mitigate the positive overall bias in SCaMPR QPEs, and improve the detection of moderate–heavy and particularly wintertime precipitation. Yet, it also tends to elevate the false alarm rate, and its impacts on detection rates can be slightly negative for summertime storms. The implications for adoption of TRMM and Global Precipitation Measurement (GPM) QPEs for NWS operations are discussed.


Sign in / Sign up

Export Citation Format

Share Document