scholarly journals Fluctuating Arctic Sea Ice Thickness Changes Estimated by an In Situ Learned and Empirically Forced Neural Network Model

2008 ◽  
Vol 21 (4) ◽  
pp. 716-729 ◽  
Author(s):  
G. I. Belchansky ◽  
D. C. Douglas ◽  
N. G. Platonov

Abstract Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982–2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel’s previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982–88 in most regions of the Arctic (+7.6 ± 0.9 cm yr−1), decreased through 1996 Arctic-wide (−6.1 ± 1.2 cm yr−1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ± 0.6 cm yr−1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65°N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996–2002. The authors speculate that decoupling of the ice thickness–volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO’s neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery.

2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2020 ◽  
Author(s):  
Alex Cabaj ◽  
Paul Kushner ◽  
Alek Petty ◽  
Stephen Howell ◽  
Christopher Fletcher

<p><span>Snow on Arctic sea ice plays multiple—and sometimes contrasting—roles in several feedbacks between sea ice and the global climate </span><span>system.</span><span> For example, the presence of snow on sea ice may mitigate sea ice melt by</span><span> increasing the sea ice albedo </span><span>and enhancing the ice-albedo feedback. Conversely, snow can</span><span> in</span><span>hibit sea ice growth by insulating the ice from the atmosphere during the </span><span>sea ice </span><span>growth season. </span><span>In addition to its contribution to sea ice feedbacks, snow on sea ice also poses a challenge for sea ice observations. </span><span>In particular, </span><span>snow </span><span>contributes to uncertaint</span><span>ies</span><span> in retrievals of sea ice thickness from satellite altimetry </span><span>measurements, </span><span>such as those from ICESat-2</span><span>. </span><span>Snow-on-sea-ice models can</span><span> produce basin-wide snow depth estimates, but these models require snowfall input from reanalysis products. In-situ snowfall measurements are a</span><span>bsent</span><span> over most of the Arctic Ocean, so it can be difficult to determine which reanalysis </span><span>snowfall</span><span> product is b</span><span>est</span><span> suited to be used as</span><span> input for a snow-on-sea-ice model.</span></p><p><span>In the absence of in-situ snowfall rate measurements, </span><span>measurements from </span><span>satellite instruments can be used to quantify snowfall over the Arctic Ocean</span><span>. </span><span>The CloudSat satellite, which is equipped with a 94 GHz Cloud Profiling Radar instrument, measures vertical radar reflectivity profiles from which snowfall rate</span><span>s</span><span> can be retrieved. </span> <span>T</span><span>his instrument</span><span> provides the most extensive high-latitude snowfall rate observation dataset currently available. </span><span>CloudSat’s near-polar orbit enables it to make measurements at latitudes up to 82°N, with a 16-day repeat cycle, </span><span>over the time period from 2006-2016.</span></p><p><span>We present a calibration of reanalysis snowfall to CloudSat observations over the Arctic Ocean, which we then apply to reanalysis snowfall input for the NASA Eulerian Snow On Sea Ice Model (NESOSIM). This calibration reduces the spread in snow depths produced by NESOSIM w</span><span>hen</span><span> different reanalysis inputs </span><span>are used</span><span>. </span><span>In light of this calibration, we revise the NESOSIM parametrizations of wind-driven snow processes, and we characterize the uncertainties in NESOSIM-generated snow depths resulting from uncertainties in snowfall input. </span><span>We then extend this analysis further to estimate the resulting uncertainties in sea ice thickness retrieved from ICESat-2 when snow depth estimates from NESOSIM are used as input for the retrieval.</span></p>


2021 ◽  
Author(s):  
Petteri Uotila ◽  
Joula Siponen ◽  
Eero Rinne ◽  
Steffen Tietsche

<p>Decadal changes in sea-ice thickness are one of the most visible signs of climate variability and change. To gain a comprehensive understanding of mechanisms involved, long time series, preferably with good uncertainty estimates, are needed. Importantly, the development of accurate predictions of sea ice in the Arctic requires good observational products. To assist this, a new sea-ice thickness product by ESA Climate Change Initiative (CCI) is compared to a set of five ocean reanalysis (ECCO-V4r4, GLORYS12V1, ORAS5 and PIOMAS).</p><p>The CCI product is based on two satellite altimetry missions, CryoSat-2 and ENVISAT, which are combined to the longest continuous satellite altimetry time series of Arctic-wide sea-ice thickness, 2002–2017. The CCI product performs well in the validation of the reanalyses: overall root-mean-square difference (RMSD) between monthly sea-ice thickness from CCI and the reanalyses ranges from 0.4–1.2 m. The differences are a sum of reanalysis biases, such as incorrect physics or forcing, as well as uncertainties in satellite altimetry, such as the snow climatology used in the thickness retrieval.</p><p>The CCI and reanalysis basin-scale sea-ice volumes have a good match in terms of year-to-year variability and long-term trends but rather different monthly mean climatologies. These findings provide a rationale to construct a multi-decadal sea-ice volume time series for the Arctic Ocean and its sub-basins from 1990–2019 by adjusting the ocean reanalyses ensemble toward CCI observations. Such a time series, including its uncertainty estimate, provides new insights to the evolution of the Arctic sea-ice volume during the past 30 years.</p>


2019 ◽  
Vol 13 (12) ◽  
pp. 3209-3224 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role in the Arctic freshwater and energy redistribution. The combined model and satellite sea ice thickness (CMST) data set assimilates CryoSat-2 and soil moisture and ocean salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then we estimate the continuous seasonal and interannual variations in Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from about -240(±40) to -970(±60) km3 and -1970(±290) to -2490(±280) km3, respectively. The sea ice volume export reaches its maximum in spring and about one-third of the yearly total volume export occurs in the melt season. The minimum monthly sea ice export is −11 km3 in August 2015, and the maximum (−442 km3) appears in March 2011. The seasonal relative frequencies of sea ice thickness and drift suggest that the Fram Strait outlet in summer is dominated by sea ice that is thicker than 2 m with relatively slow seasonal mean drift of about 3 km d−1.


2019 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role on the Arctic freshwater and energy redistribution. The combined model and satellite thickness (CMST) data set assimilates CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then estimate the continuous seasonal and interannual variations of Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from −244 (±43) to −973 (±59) km3 and −1974 (±291) to −2491 (±280) km3, respectively. The sea ice volume export reaches its maximum in spring and the mean amount of the melt season ice volume export accounts about one third of the yearly total amount. The minimum monthly sea ice export is −11 km3 in August 2015 and the maximum (−442 km3) appears in March 2011. Seasonal variations of sea ice thickness and drift frequency distributions infer that the thicker ice accompanied with slower ice motion is easier to appear when there is sea ice exporting through the Fram Strait outlet in summer.


2014 ◽  
Vol 8 (2) ◽  
pp. 705-720 ◽  
Author(s):  
M. Zygmuntowska ◽  
P. Rampal ◽  
N. Ivanova ◽  
L. H. Smedsrud

Abstract. Sea ice volume has decreased in the last decades, evoked by changes in sea ice area and thickness. Estimates of sea ice area and thickness rely on a number of geophysical parameters which introduce large uncertainties. To quantify these uncertainties we use freeboard retrievals from ICESat and investigate different assumptions about snow depth, sea ice density and area. We find that uncertainties in ice area are of minor importance for the estimates of sea ice volume during the cold season in the Arctic basin. The choice of mean ice density used when converting sea ice freeboard into thickness mainly influences the resulting mean sea ice thickness, while snow depth on top of the ice is the main driver for the year-to-year variability, particularly in late winter. The absolute uncertainty in the mean sea ice thickness is 0.28 m in February/March and 0.21 m in October/November. The uncertainty in snow depth contributes up to 70% of the total uncertainty and the ice density 30–35%, with higher values in October/November. We find large uncertainties in the total sea ice volume and trend. The mean total sea ice volume is 10 120 ± 1280 km3 in October/November and 13 250 ± 1860 km3 in February/March for the time period 2005–2007. Based on these uncertainties we obtain trends in sea ice volume of −1450 ± 530 km3 a−1 in October/November and −880 ± 260 km3 a−1 in February/March over the ICESat period (2003–2008). Our results indicate that, taking into account the uncertainties, the decline in sea ice volume in the Arctic between the ICESat (2003–2008) and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in previous studies. However, more work and validation is required to quantify these changes and analyse possible unresolved biases in the freeboard retrievals.


2013 ◽  
Vol 7 (5) ◽  
pp. 5051-5095 ◽  
Author(s):  
M. Zygmuntowska ◽  
P. Rampal ◽  
N. Ivanova ◽  
L. H. Smedsrud

Abstract. Sea ice volume has been found to decrease in the last decades, evoked by changes in sea ice area and thickness. Estimates of sea ice area and thickness rely on a number of geophysical parameters which introduce large uncertainties. To quantify these uncertainties we use freeboard retrievals from ICESat and investigate different assumptions on snow depth, sea ice density and area. We find that uncertainties in ice area are of minor importance for the estimates of sea ice volume during the cold season in the Arctic basin. The choice of mean ice density used when converting sea ice freeboard into thickness mainly influences the resulting mean sea ice thickness, while snow depth on top of the ice is the main driver for the year-to-year variability, particularly in late winter. The absolute uncertainty in the mean sea ice thickness is 0.28 m in February/March and 0.21 m in October/November. The uncertainty in snow depth contributes up to 70% of the total uncertainty and the ice density 30–35%, with higher values in October/November. We find large uncertainties in the total sea ice volume and trend. The mean total sea ice volume is 10 120 ± 1278 km3 in October/November and 13 254 ± 1858 km3 in February/March for the time period 2005–2007. Based on these uncertainties we obtain trends in sea ice volume of −1445 ± 531 km^3 a−1 in October/November and −875 ± 257 km3 a−1 in February/March over the ICESat period (2003–2008). Our results indicate that, taking into account the uncertainties, the decline in sea ice volume in the Arctic between the ICESat (2003–2008) and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in previous studies.


2019 ◽  
Author(s):  
Jean-Claude Gascard ◽  
Jinlun Zhang ◽  
Mehrad Rafizadeh

Abstract. The drastic reduction of the Arctic sea ice over the past 40 years is the most glaring evidence of climate change on Planet Earth. Among all the variables characterizing sea ice, the sea ice volume is by far the most sensitive one for climate change since it is decaying at the highest rate compared to sea ice extent and sea ice thickness. In 40 years the Arctic Ocean has lost about 3/4 of its sea ice volume at the end of the summer season corresponding to a reduction of both sea ice extent and sea ice thickness by half on average. From more than 16 000 km3, 40 years ago, the Arctic sea ice summer minimum dropped down to less than 4000 km3 during the most recent summers. Being a combination of Arctic sea ice extent and sea ice thickness, the Arctic sea ice volume is difficult to observe directly and accurately. We estimated cumulative Freezing-Degree Days (FDD) over a 9 month freezing time period (September to May each year) based on ERA Interim surface air temperature reanalysis over the whole Arctic Ocean and for the past 38 years. Then we compared the Arctic sea ice volume based on sea ice thickness deduced from cumulative FDD with Arctic sea ice volume estimated from PIOMAS (Pan Arctic Ice Ocean Modeling and Assimilation System) and from the ESA CRYOSAT-2 satellite. The results are strikingly similar. The warming of the atmosphere is playing an important role in contributing to the Arctic sea ice volume decrease during the whole freezing season (September to May). In addition, the FDD spatial distribution exhibiting a sharp double peak-like feature is reflecting the Multi Y ear Ice (MYI) versus First Year Ice (FYI) dual disposition typical of the Arctic sea ice cover. This is indicative of a significant contribution from the vertical ocean heat fluxes throughout the ice depending on MYI versus FYI distribution and the snow layer on top of it influencing the surface air temperature accordingly. In 2018 the Arctic MYI vanished almost completely for the first time ever over the past 40 years. The quasi complete disappearance of the Arctic sea ice is more likely to happen in summer within the next 15 years with broad consequences for Arctic marine and terrestrial ecosystems, climate and weather patterns on a planetary scale and globally on human activities.


2019 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Arctic sea ice is a key component of the Arctic climate system, which in turn impacts global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000), the Ice, Cloud, and land Elevation Satellite (ICESat, 2003–2008), and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice age-based thickness and volume show good agreement in terms of bias and root mean square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February/March and October/November. Sea ice volume exhibits a decreasing trend of −411 km3/year from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting volume, changes in sea ice thickness from November to May contribute at least 80 %, decreasing to around 50 % in August and September. Changes in sea ice area contribute less than 30 % in all months.


2019 ◽  
Vol 11 (23) ◽  
pp. 2864 ◽  
Author(s):  
Jiping Liu ◽  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Yongyun Hu

The accurate knowledge of spatial and temporal variations of snow depth over sea ice in the Arctic basin is important for understanding the Arctic energy budget and retrieving sea ice thickness from satellite altimetry. In this study, we develop and validate a new method for retrieving snow depth over Arctic sea ice from brightness temperatures at different frequencies measured by passive microwave radiometers. We construct an ensemble-based deep neural network and use snow depth measured by sea ice mass balance buoys to train the network. First, the accuracy of the retrieved snow depth is validated with observations. The results show the derived snow depth is in good agreement with the observations, in terms of correlation, bias, root mean square error, and probability distribution. Our ensemble-based deep neural network can be used to extend the snow depth retrieval from first-year sea ice (FYI) to multi-year sea ice (MYI), as well as during the melting period. Second, the consistency and discrepancy of snow depth in the Arctic basin between our retrieval using the ensemble-based deep neural network and two other available retrievals using the empirical regression are examined. The results suggest that our snow depth retrieval outperforms these data sets.


Sign in / Sign up

Export Citation Format

Share Document