scholarly journals Sea ice export through the Fram Strait derived from a combined model and satellite data set

2019 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role on the Arctic freshwater and energy redistribution. The combined model and satellite thickness (CMST) data set assimilates CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then estimate the continuous seasonal and interannual variations of Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from −244 (±43) to −973 (±59) km3 and −1974 (±291) to −2491 (±280) km3, respectively. The sea ice volume export reaches its maximum in spring and the mean amount of the melt season ice volume export accounts about one third of the yearly total amount. The minimum monthly sea ice export is −11 km3 in August 2015 and the maximum (−442 km3) appears in March 2011. Seasonal variations of sea ice thickness and drift frequency distributions infer that the thicker ice accompanied with slower ice motion is easier to appear when there is sea ice exporting through the Fram Strait outlet in summer.

2019 ◽  
Vol 13 (12) ◽  
pp. 3209-3224 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role in the Arctic freshwater and energy redistribution. The combined model and satellite sea ice thickness (CMST) data set assimilates CryoSat-2 and soil moisture and ocean salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then we estimate the continuous seasonal and interannual variations in Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from about -240(±40) to -970(±60) km3 and -1970(±290) to -2490(±280) km3, respectively. The sea ice volume export reaches its maximum in spring and about one-third of the yearly total volume export occurs in the melt season. The minimum monthly sea ice export is −11 km3 in August 2015, and the maximum (−442 km3) appears in March 2011. The seasonal relative frequencies of sea ice thickness and drift suggest that the Fram Strait outlet in summer is dominated by sea ice that is thicker than 2 m with relatively slow seasonal mean drift of about 3 km d−1.


2016 ◽  
Vol 10 (2) ◽  
pp. 523-534 ◽  
Author(s):  
T. Krumpen ◽  
R. Gerdes ◽  
C. Haas ◽  
S. Hendricks ◽  
A. Herber ◽  
...  

Abstract. Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into the composition and properties of Arctic sea ice in general and how it varies over time. A data set of ground-based and airborne electromagnetic ice thickness measurements collected during summer between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The primary source of the surveyed sea ice leaving Fram Strait is the Laptev Sea and its age has decreased from 3 to 2 years between 1990 and 2012. The thickness data consistently also show a general thinning of sea ice for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease in sea ice thickness of 0.19 m degree−1 latitude south of 81° N. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. While satellite data show that monthly ice area export had positive trends since 1980 (10.9  ×  103 km2 decade−1), the summer (July and August) ice area export is low with high uncertainties. The average volume export amounts to 16.78 km3. Naturally, the volume flux estimates are limited to the period when airborne thickness surveys are available. Nevertheless, we could show that the combination of satellite data and airborne observations can be used to determine volume fluxes through Fram Strait and as such, can be used to bridge the lack of satellite-based sea ice thickness information in summer.


2015 ◽  
Vol 9 (5) ◽  
pp. 5171-5202 ◽  
Author(s):  
T. Krumpen ◽  
R. Gerdes ◽  
C. Haas ◽  
S. Hendricks ◽  
A. Herber ◽  
...  

Abstract. Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into composition and properties of Arctic sea ice in general and how it varies over time. An extensive data set of ground-based and airborne electromagnetic ice thickness measurements collected between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The source area for the surveyed ice is primarily the Laptev Sea, and the estimated age is consistent with a decreased from 3 to 2 years between 1990 and 2012. The data consistently also show a general thinning for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease of 0.19 m degree−1 latitude south of 81° N probably driven by bottom melting from warm water of Atlantic origin. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. This shows that it is possible to determine volume fluxes through Fram Strait during summer when satellite based sea ice thickness information is missing. While the ice area export based on satellite remote sensing shows positive trends since 2001, the mean fluxes during summer (July and August) are small (18 km3), and long-term trends are uncertain due to the limited surveys available.


2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2021 ◽  
Author(s):  
Petteri Uotila ◽  
Joula Siponen ◽  
Eero Rinne ◽  
Steffen Tietsche

<p>Decadal changes in sea-ice thickness are one of the most visible signs of climate variability and change. To gain a comprehensive understanding of mechanisms involved, long time series, preferably with good uncertainty estimates, are needed. Importantly, the development of accurate predictions of sea ice in the Arctic requires good observational products. To assist this, a new sea-ice thickness product by ESA Climate Change Initiative (CCI) is compared to a set of five ocean reanalysis (ECCO-V4r4, GLORYS12V1, ORAS5 and PIOMAS).</p><p>The CCI product is based on two satellite altimetry missions, CryoSat-2 and ENVISAT, which are combined to the longest continuous satellite altimetry time series of Arctic-wide sea-ice thickness, 2002–2017. The CCI product performs well in the validation of the reanalyses: overall root-mean-square difference (RMSD) between monthly sea-ice thickness from CCI and the reanalyses ranges from 0.4–1.2 m. The differences are a sum of reanalysis biases, such as incorrect physics or forcing, as well as uncertainties in satellite altimetry, such as the snow climatology used in the thickness retrieval.</p><p>The CCI and reanalysis basin-scale sea-ice volumes have a good match in terms of year-to-year variability and long-term trends but rather different monthly mean climatologies. These findings provide a rationale to construct a multi-decadal sea-ice volume time series for the Arctic Ocean and its sub-basins from 1990–2019 by adjusting the ocean reanalyses ensemble toward CCI observations. Such a time series, including its uncertainty estimate, provides new insights to the evolution of the Arctic sea-ice volume during the past 30 years.</p>


2021 ◽  
Vol 15 (6) ◽  
pp. 2575-2591
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Gerit Birnbaum ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exiting the Arctic Ocean does so through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated summer (July–August) time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison of this time series with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years at the end of the Transpolar Drift. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate for the impact processes, such as Atlantification, have on sea ice thickness in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea-ice-covered Arctic.


2014 ◽  
Vol 8 (2) ◽  
pp. 705-720 ◽  
Author(s):  
M. Zygmuntowska ◽  
P. Rampal ◽  
N. Ivanova ◽  
L. H. Smedsrud

Abstract. Sea ice volume has decreased in the last decades, evoked by changes in sea ice area and thickness. Estimates of sea ice area and thickness rely on a number of geophysical parameters which introduce large uncertainties. To quantify these uncertainties we use freeboard retrievals from ICESat and investigate different assumptions about snow depth, sea ice density and area. We find that uncertainties in ice area are of minor importance for the estimates of sea ice volume during the cold season in the Arctic basin. The choice of mean ice density used when converting sea ice freeboard into thickness mainly influences the resulting mean sea ice thickness, while snow depth on top of the ice is the main driver for the year-to-year variability, particularly in late winter. The absolute uncertainty in the mean sea ice thickness is 0.28 m in February/March and 0.21 m in October/November. The uncertainty in snow depth contributes up to 70% of the total uncertainty and the ice density 30–35%, with higher values in October/November. We find large uncertainties in the total sea ice volume and trend. The mean total sea ice volume is 10 120 ± 1280 km3 in October/November and 13 250 ± 1860 km3 in February/March for the time period 2005–2007. Based on these uncertainties we obtain trends in sea ice volume of −1450 ± 530 km3 a−1 in October/November and −880 ± 260 km3 a−1 in February/March over the ICESat period (2003–2008). Our results indicate that, taking into account the uncertainties, the decline in sea ice volume in the Arctic between the ICESat (2003–2008) and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in previous studies. However, more work and validation is required to quantify these changes and analyse possible unresolved biases in the freeboard retrievals.


2013 ◽  
Vol 7 (5) ◽  
pp. 5051-5095 ◽  
Author(s):  
M. Zygmuntowska ◽  
P. Rampal ◽  
N. Ivanova ◽  
L. H. Smedsrud

Abstract. Sea ice volume has been found to decrease in the last decades, evoked by changes in sea ice area and thickness. Estimates of sea ice area and thickness rely on a number of geophysical parameters which introduce large uncertainties. To quantify these uncertainties we use freeboard retrievals from ICESat and investigate different assumptions on snow depth, sea ice density and area. We find that uncertainties in ice area are of minor importance for the estimates of sea ice volume during the cold season in the Arctic basin. The choice of mean ice density used when converting sea ice freeboard into thickness mainly influences the resulting mean sea ice thickness, while snow depth on top of the ice is the main driver for the year-to-year variability, particularly in late winter. The absolute uncertainty in the mean sea ice thickness is 0.28 m in February/March and 0.21 m in October/November. The uncertainty in snow depth contributes up to 70% of the total uncertainty and the ice density 30–35%, with higher values in October/November. We find large uncertainties in the total sea ice volume and trend. The mean total sea ice volume is 10 120 ± 1278 km3 in October/November and 13 254 ± 1858 km3 in February/March for the time period 2005–2007. Based on these uncertainties we obtain trends in sea ice volume of −1445 ± 531 km^3 a−1 in October/November and −875 ± 257 km3 a−1 in February/March over the ICESat period (2003–2008). Our results indicate that, taking into account the uncertainties, the decline in sea ice volume in the Arctic between the ICESat (2003–2008) and CryoSat-2 (2010–2012) periods may have been less dramatic than reported in previous studies.


2019 ◽  
Author(s):  
Jean-Claude Gascard ◽  
Jinlun Zhang ◽  
Mehrad Rafizadeh

Abstract. The drastic reduction of the Arctic sea ice over the past 40 years is the most glaring evidence of climate change on Planet Earth. Among all the variables characterizing sea ice, the sea ice volume is by far the most sensitive one for climate change since it is decaying at the highest rate compared to sea ice extent and sea ice thickness. In 40 years the Arctic Ocean has lost about 3/4 of its sea ice volume at the end of the summer season corresponding to a reduction of both sea ice extent and sea ice thickness by half on average. From more than 16 000 km3, 40 years ago, the Arctic sea ice summer minimum dropped down to less than 4000 km3 during the most recent summers. Being a combination of Arctic sea ice extent and sea ice thickness, the Arctic sea ice volume is difficult to observe directly and accurately. We estimated cumulative Freezing-Degree Days (FDD) over a 9 month freezing time period (September to May each year) based on ERA Interim surface air temperature reanalysis over the whole Arctic Ocean and for the past 38 years. Then we compared the Arctic sea ice volume based on sea ice thickness deduced from cumulative FDD with Arctic sea ice volume estimated from PIOMAS (Pan Arctic Ice Ocean Modeling and Assimilation System) and from the ESA CRYOSAT-2 satellite. The results are strikingly similar. The warming of the atmosphere is playing an important role in contributing to the Arctic sea ice volume decrease during the whole freezing season (September to May). In addition, the FDD spatial distribution exhibiting a sharp double peak-like feature is reflecting the Multi Y ear Ice (MYI) versus First Year Ice (FYI) dual disposition typical of the Arctic sea ice cover. This is indicative of a significant contribution from the vertical ocean heat fluxes throughout the ice depending on MYI versus FYI distribution and the snow layer on top of it influencing the surface air temperature accordingly. In 2018 the Arctic MYI vanished almost completely for the first time ever over the past 40 years. The quasi complete disappearance of the Arctic sea ice is more likely to happen in summer within the next 15 years with broad consequences for Arctic marine and terrestrial ecosystems, climate and weather patterns on a planetary scale and globally on human activities.


2008 ◽  
Vol 21 (4) ◽  
pp. 716-729 ◽  
Author(s):  
G. I. Belchansky ◽  
D. C. Douglas ◽  
N. G. Platonov

Abstract Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982–2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel’s previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982–88 in most regions of the Arctic (+7.6 ± 0.9 cm yr−1), decreased through 1996 Arctic-wide (−6.1 ± 1.2 cm yr−1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ± 0.6 cm yr−1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65°N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996–2002. The authors speculate that decoupling of the ice thickness–volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO’s neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery.


Sign in / Sign up

Export Citation Format

Share Document