scholarly journals A Basin- to Channel-Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana

2008 ◽  
Vol 136 (3) ◽  
pp. 833-864 ◽  
Author(s):  
Joannes J. Westerink ◽  
Richard A. Luettich ◽  
Jesse C. Feyen ◽  
John H. Atkinson ◽  
Clint Dawson ◽  
...  

Abstract Southern Louisiana is characterized by low-lying topography and an extensive network of sounds, bays, marshes, lakes, rivers, and inlets that permit widespread inundation during hurricanes. A basin- to channel-scale implementation of the Advanced Circulation (ADCIRC) unstructured grid hydrodynamic model has been developed that accurately simulates hurricane storm surge, tides, and river flow in this complex region. This is accomplished by defining a domain and computational resolution appropriate for the relevant processes, specifying realistic boundary conditions, and implementing accurate, robust, and highly parallel unstructured grid numerical algorithms. The model domain incorporates the western North Atlantic, the Gulf of Mexico, and the Caribbean Sea so that interactions between basins and the shelf are explicitly modeled and the boundary condition specification of tidal and hurricane processes can be readily defined at the deep water open boundary. The unstructured grid enables highly refined resolution of the complex overland region for modeling localized scales of flow while minimizing computational cost. Kinematic data assimilative or validated dynamic-modeled wind fields provide the hurricane wind and pressure field forcing. Wind fields are modified to incorporate directional boundary layer changes due to overland increases in surface roughness, reduction in effective land roughness due to inundation, and sheltering due to forested canopies. Validation of the model is achieved through hindcasts of Hurricanes Betsy and Andrew. A model skill assessment indicates that the computed peak storm surge height has a mean absolute error of 0.30 m.

2010 ◽  
Vol 46 (3) ◽  
pp. 329-358 ◽  
Author(s):  
S. Tanaka ◽  
S. Bunya ◽  
J. J. Westerink ◽  
C. Dawson ◽  
R. A. Luettich

2012 ◽  
Vol 1 (33) ◽  
pp. 69 ◽  
Author(s):  
Mathijs Van Ledden ◽  
Joost Lansen ◽  
Hennes De Ridder ◽  
Billy Edge

This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further increase the risk of flooding due to hurricane storm surge. A surge barrier downstream of New Orleans has been considered as an alternative to levee raise along the Mississippi River. Hydraulic computations show that the build-up of water behind the barrier due to the Mississippi River flow is (much) lower than the hurricane surge protruding up the river in the no-barrier situation. The barrier will probably eliminate the need to upgrade the system upstream of the barrier while providing the same level of hurricane risk reduction. A hybrid barrier (a combination of different gate types) with a primary swing gate for navigation (and flow) and secondary lift gates to accommodate for flow is a technically feasible alternative. The barrier remains open for almost the entire year and would only to be closed during severe tropical events (say once every 2 - 3 years). Several measures are included in the conceptual design to mitigate the navigation impact. The construction costs of the barrier are estimated at $1.6 - 2.6 billion. It is recommended to compare the investment costs of a barrier including adjacent tie-ins to the existing HSDRRS to the costs of upgrading and maintaining the levee system throughout the city of New Orleans.


1980 ◽  
Vol 1 (17) ◽  
pp. 44
Author(s):  
Rodney J. Sobey ◽  
Bruce A. Harper ◽  
George M. Mitchell

Details are presented of a general numerical hydrodynamic model for the generation and propagation of tropical cyclone or hurricane storm surge. The model, known as SURGE, solves the two-dimensional depth-integrated form of the Long Wave Equations using an explicit finite difference procedure, with tropical cyclone surface wind and pressure forcing estimated from an adaption of available models based on U.S. hurricanes. Variations in tropical cyclone parameters as well as the physical characteristics of a coastal location such as bathymetry and details of capes, bays, reefs and islands are accommodated by the model. The accuracy and stability of the numerical solution have been confirmed by a comprehensive wave deformation analysis including quasi-non-linear effects and the open boundary problem has been overcome by the use of a Bathystrophic Storm Tide approximation to boundary water levels. A detailed sensitivity analysis has identified the principal surge generating parameters and the model has been checked against an historical tropical cyclone storm surge. SURGE has been used extensively in the northern Australian region and examples are presented.


Author(s):  
J. Atkinson ◽  
J. Westerink ◽  
T. Wamsley ◽  
M. Cialone ◽  
C. Dietrich ◽  
...  

2011 ◽  
Vol 139 (8) ◽  
pp. 2488-2522 ◽  
Author(s):  
J. C. Dietrich ◽  
J. J. Westerink ◽  
A. B. Kennedy ◽  
J. M. Smith ◽  
R. E. Jensen ◽  
...  

AbstractHurricane Gustav (2008) made landfall in southern Louisiana on 1 September 2008 with its eye never closer than 75 km to New Orleans, but its waves and storm surge threatened to flood the city. Easterly tropical-storm-strength winds impacted the region east of the Mississippi River for 12–15 h, allowing for early surge to develop up to 3.5 m there and enter the river and the city’s navigation canals. During landfall, winds shifted from easterly to southerly, resulting in late surge development and propagation over more than 70 km of marshes on the river’s west bank, over more than 40 km of Caernarvon marsh on the east bank, and into Lake Pontchartrain to the north. Wind waves with estimated significant heights of 15 m developed in the deep Gulf of Mexico but were reduced in size once they reached the continental shelf. The barrier islands further dissipated the waves, and locally generated seas existed behind these effective breaking zones.The hardening and innovative deployment of gauges since Hurricane Katrina (2005) resulted in a wealth of measured data for Gustav. A total of 39 wind wave time histories, 362 water level time histories, and 82 high water marks were available to describe the event. Computational models—including a structured-mesh deepwater wave model (WAM) and a nearshore steady-state wave (STWAVE) model, as well as an unstructured-mesh “simulating waves nearshore” (SWAN) wave model and an advanced circulation (ADCIRC) model—resolve the region with unprecedented levels of detail, with an unstructured mesh spacing of 100–200 m in the wave-breaking zones and 20–50 m in the small-scale channels. Data-assimilated winds were applied using NOAA’s Hurricane Research Division Wind Analysis System (H*Wind) and Interactive Objective Kinematic Analysis (IOKA) procedures. Wave and surge computations from these models are validated comprehensively at the measurement locations ranging from the deep Gulf of Mexico and along the coast to the rivers and floodplains of southern Louisiana and are described and quantified within the context of the evolution of the storm.


2016 ◽  
Vol 66 (8) ◽  
pp. 1005-1024 ◽  
Author(s):  
Alyssa Pampell-Manis ◽  
Juan Horrillo ◽  
Jens Figlus

2019 ◽  
Vol 99 (2) ◽  
pp. 1105-1130 ◽  
Author(s):  
Kun Yang ◽  
Vladimir Paramygin ◽  
Y. Peter Sheng

Abstract The joint probability method (JPM) is the traditional way to determine the base flood elevation due to storm surge, and it usually requires simulation of storm surge response from tens of thousands of synthetic storms. The simulated storm surge is combined with probabilistic storm rates to create flood maps with various return periods. However, the map production requires enormous computational cost if state-of-the-art hydrodynamic models with high-resolution numerical grids are used; hence, optimal sampling (JPM-OS) with a small number of (~ 100–200) optimal (representative) storms is preferred. This paper presents a significantly improved JPM-OS, where a small number of optimal storms are objectively selected, and simulated storm surge responses of tens of thousands of storms are accurately interpolated from those for the optimal storms using a highly efficient kriging surrogate model. This study focuses on Southwest Florida and considers ~ 150 optimal storms that are selected based on simulations using either the low fidelity (with low resolution and simple physics) SLOSH model or the high fidelity (with high resolution and comprehensive physics) CH3D model. Surge responses to the optimal storms are simulated using both SLOSH and CH3D, and the flood elevations are calculated using JPM-OS with highly efficient kriging interpolations. For verification, the probabilistic inundation maps are compared to those obtained by the traditional JPM and variations of JPM-OS that employ different interpolation schemes, and computed probabilistic water levels are compared to those calculated by historical storm methods. The inundation maps obtained with the JPM-OS differ less than 10% from those obtained with JPM for 20,625 storms, with only 4% of the computational time.


Sign in / Sign up

Export Citation Format

Share Document