Numerical Simulations of the Formation of Hurricane Gabrielle (2001)

2008 ◽  
Vol 136 (8) ◽  
pp. 3151-3167 ◽  
Author(s):  
K. D. Musgrave ◽  
C. A. Davis ◽  
M. T. Montgomery

Abstract This study examines the formation of Hurricane Gabrielle (2001), focusing on whether an initial disturbance and vertical wind shear were favorable for development. This examination is performed by running numerical experiments using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Gabrielle is chosen as an interesting case to study since it formed in the subtropics only a few days before making landfall in Florida. Three simulations are run: a control run and two sensitivity experiments. The control run is compared with observations to establish the closeness of the model output to Gabrielle’s observed formation. The two sensitivity experiments are designed to test the response of the developing tropical cyclone to alterations in the initial conditions. The first sensitivity experiment removes the initial (or precursor) disturbance, a midtropospheric vortex located over Florida. The second sensitivity experiment reduces the vertical wind shear over the area of formation. The control run produces a system comparable to Gabrielle. The convection in the control run is consistently located downshear of the center of circulation. In the first sensitivity experiment, with the removal of the initial disturbance, no organized system develops. This indicates the importance of the midtropospheric vortex in Gabrielle’s formation. The second sensitivity experiment, which reduces the vertical wind shear over the area of Gabrielle’s formation, produces a system that can be identified as Gabrielle. This system, however, is weaker than both the control run and the observations of Gabrielle. This study provides direct evidence of a favorable influence of modest vertical wind shear on the formation of a tropical cyclone in this case.

2005 ◽  
Vol 62 (9) ◽  
pp. 3193-3212 ◽  
Author(s):  
Joey H. Y. Kwok ◽  
Johnny C. L. Chan

Abstract The influence of a uniform flow on the structural changes of a tropical cyclone (TC) is investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Idealized experiments are performed on either an f plane or a β plane. A strong uniform flow on an f plane results in a weaker vortex due to the development of a vertical wind shear induced by the asymmetric vertical motion and a rotation of upper-level anticyclone. The asymmetric vertical motion also reduces the secondary circulation of the vortex. On a β plane with no flow, a broad anticyclonic flow is found to the southeast of the vortex, which expands with time. Similar to the f-plane case, asymmetric vertical motion and vertical wind shear are also found. This beta-induced shear weakens the no-flow case significantly relative to that on an f plane. When a uniform flow is imposed on a β plane, an easterly flow produces a stronger asymmetry whereas a westerly flow reduces it. In addition, an easterly uniform flow tends to strengthen the beta-induced shear whereas a westerly flow appears to reduce it by altering the magnitude and direction of the shear vector. As a result, a westerly flow enhances TC development while an easterly flow reduces it. The vortex tilt and midlevel warming found in this study agree with the previous investigations of vertical wind shear. A strong uniform flow with a constant f results in a tilted and deformed potential vorticity at the upper levels. For a variable f, such tilting is more pronounced for a vortex in an easterly flow, while a westerly flow reduces the tilt. In addition, the vortex tilt appears to be related to the midlevel warming such that the warm core in the lower troposphere cannot extent upward, which leads to the subsequent weakening of the TC.


2013 ◽  
Vol 141 (1) ◽  
pp. 232-251 ◽  
Author(s):  
Ryan D. Torn ◽  
David Cook

Abstract An ensemble of Weather Research and Forecasting Model (WRF) forecasts initialized from a cycling ensemble Kalman filter (EnKF) system is used to evaluate the sensitivity of Hurricanes Danielle and Karl’s (2010) genesis forecasts to vortex and environmental initial conditions via ensemble sensitivity analysis. Both the Danielle and Karl forecasts are sensitive to the 0-h circulation associated with the pregenesis system over a deep layer and to the temperature and water vapor mixing ratio within the vortex over a comparatively shallow layer. Empirical orthogonal functions (EOFs) of the 0-h ensemble kinematic and thermodynamic fields within the vortex indicate that the 0-h circulation and moisture fields covary with one another, such that a stronger vortex is associated with higher moisture through the column. Forecasts of the pregenesis system intensity are only sensitive to the leading mode of variability in the vortex fields, suggesting that only specific initial condition perturbations associated with the vortex will amplify with time. Multivariate regressions of the vortex EOFs and environmental parameters believed to impact genesis suggest that the Karl forecast is most sensitive to the vortex structure, with smaller sensitivity to the upwind integrated water vapor and 200–850-hPa vertical wind shear magnitude. By contrast, the Danielle forecast is most sensitive to the vortex structure during the first 24 h, but is more sensitive to the 200-hPa divergence and vertical wind shear magnitude at longer forecast hours.


2019 ◽  
Vol 147 (2) ◽  
pp. 495-517 ◽  
Author(s):  
Christopher A. Kerr ◽  
David J. Stensrud ◽  
Xuguang Wang

AbstractConvection intensity and longevity is highly dependent on the surrounding environment. Ensemble sensitivity analysis (ESA), which quantitatively and qualitatively interprets impacts of initial conditions on forecasts, is applied to very short-term (1–2 h) convective-scale forecasts for three cases during the Mesoscale Predictability Experiment (MPEX) in 2013. The ESA technique reveals several dependencies of individual convective storm evolution on their nearby environments. The three MPEX cases are simulated using a previously verified 36-member convection-allowing model (Δx = 3 km) ensemble created via the Weather Research and Forecasting (WRF) Model. Radar and other conventional observations are assimilated using an ensemble adjustment Kalman filter. The three cases include a mesoscale convective system (MCS) and both nontornadic and tornadic supercells. Of the many ESAs applied in this study, one of the most notable is the positive sensitivity of supercell updraft helicity to increases in both storm inflow region deep and shallow vertical wind shear. This result suggests that larger values of vertical wind shear within the storm inflow yield higher values of storm updraft helicity. Results further show that the supercell storms quickly enhance the environmental vertical wind shear within the storm inflow region. Application of ESA shows that these storm-induced perturbations then affect further storm evolution, suggesting the presence of storm–environment feedback cycles where perturbations affect future mesocyclone strength. Overall, ESA can provide insight into convection dependencies on the near-storm environment.


2005 ◽  
Vol 20 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Hui Yu ◽  
H. Joe Kwon

Abstract Using large-scale analyses, the effect of tropical cyclone–trough interaction on tropical cyclone (TC) intensity change is readdressed by studying the evolution of upper-level eddy flux convergence (EFC) of angular momentum and vertical wind shear for two TCs in the western North Pacific [Typhoons Prapiroon (2000) and Olga (1999)]. Major findings include the following: 1) In spite of decreasing SST, the cyclonic inflow associated with a midlatitude trough should have played an important role in Prapiroon’s intensification to its maximum intensity and the maintenance after recurvature through an increase in EFC. The accompanied large vertical wind shear is concentrated in a shallow layer in the upper troposphere. 2) Although Olga also recurved downstream of a midlatitude trough, its development and maintenance were not strongly influenced by the trough. A TC could maintain itself in an environment with or without upper-level eddy momentum forcing. 3) Both TCs started to decay over cold SST in a large EFC and vertical wind shear environment imposed by the trough. 4) Uncertainty of input adds difficulties in quantitative TC intensity forecasting.


2015 ◽  
Vol 143 (5) ◽  
pp. 1762-1781 ◽  
Author(s):  
Fei He ◽  
Derek J. Posselt ◽  
Colin M. Zarzycki ◽  
Christiane Jablonowski

Abstract This paper presents a balanced tropical cyclone (TC) test case designed to improve current understanding of how atmospheric general circulation model (AGCM) configurations affect simulated TC development and behavior. It consists of an analytic initial condition comprising two independently balanced components. The first provides a vortical TC seed, while the second adds a planetary-scale zonal flow with height-dependent velocity and imposes background vertical wind shear (VWS) on the TC seed. The environmental flow satisfies the steady-state hydrostatic primitive equations in spherical coordinates and is in balance with other background field variables (e.g., temperature, surface geopotential). The evolution of idealized TCs in the test case framework is illustrated in 10-day simulations performed with the Community Atmosphere Model, version 5.1.1 (CAM 5.1.1). Environmental wind profiles with different magnitudes, directions, and vertical inflection points are applied to ensure that the technique is robust to changes in the VWS characteristics. The well-known shear-induced intensity change and structural asymmetry in tropical cyclones are well captured. Sensitivity of TC evolution to small perturbations in the initial vortex is also quantitatively addressed to validate the numerical robustness of the technique. It is concluded that the enhanced TC test case can be used to evaluate the impact of model choice (e.g., resolution, physical parameterizations) on the simulation and representation of TC-like vortices in AGCMs.


2014 ◽  
Vol 29 (5) ◽  
pp. 1169-1180 ◽  
Author(s):  
Christopher S. Velden ◽  
John Sears

Abstract Vertical wind shear is well known in the tropical cyclone (TC) forecasting community as an important environmental influence on storm structure and intensity change. The traditional way to define deep-tropospheric vertical wind shear in most prior research studies, and in operational forecast applications, is to simply use the vector difference of the 200- and 850-hPa wind fields based on global model analyses. However, is this rather basic approach to approximate vertical wind shear adequate for most TC applications? In this study, the traditional approach is compared to a different methodology for generating fields of vertical wind shear as produced by the University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (CIMSS). The CIMSS fields are derived with heavy analysis weight given to available high-density satellite-derived winds. The resultant isobaric analyses are then used to create two mass-weighted layer-mean wind fields, one upper and one lower tropospheric, which are then differenced to produce the deep-tropospheric vertical wind shear field. The principal novelty of this approach is that it does not rely simply on the analyzed winds at two discrete levels, but instead attempts to account for some of the variable vertical wind structure in the calculation. It will be shown how the resultant vertical wind shear fields derived by the two approaches can diverge significantly in certain situations; the results also suggest that in many cases it is superior in depicting the wind structure's impact on TCs than the simple two-level differential that serves as the common contemporary vertical wind shear approximation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaomeng Li ◽  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Jing Xu

Tropical cyclone (TC) intensification over marginal seas, especially rapid intensification (RI), often poses great threat to lives and properties in coastal regions and is subject to large forecast errors. It is thus important to understand the characteristics of TC intensification and the involved key factors affecting TC intensification over marginal seas. In this study, the 6-hourly TC best-track data from Shanghai Typhoon Institute of China Meteorological Administration, ERA-Interim reanalysis data, and TRMM satellite rainfall products are used to analyze and compare the climatological characteristics and key factors of different intensification stratifications over the marginal seas of China (MSC) and the western North Pacific (WNP) during 1980–2018. The statistical results show that TC intensification over the MSC is more likely to occur when TCs experience relatively large intensities, weak vertical wind shear, small translation perpendicular to the coastline, relatively high fullness, strong upper-level divergence, low-level relative vorticity, and high inner-core precipitation rate. The box difference index method is used to quantify the relative contributions of these factors to TC RI. Results show that the initial (relative) intensity contributes the most to TC RI over both the MSC and the WNP. The inner-core precipitation rate and translation perpendicular to the coastline are of second importance to TC RI over the MSC, while both vertical wind shear and TC fullness are crucial to TC RI over the WNP. These findings may help understand TC activity over the MSC and provide a basis for improving intensity prediction of TCs in the MSC.


Sign in / Sign up

Export Citation Format

Share Document