A Comparison of Climate Prediction and Simulation over the Tropical Pacific

2008 ◽  
Vol 21 (14) ◽  
pp. 3601-3611 ◽  
Author(s):  
Vasubandhu Misra ◽  
L. Marx ◽  
M. Fennessy ◽  
B. Kirtman ◽  
J. L. Kinter

Abstract This study compares an ensemble of seasonal hindcasts with a multidecadal integration from the same global coupled climate model over the tropical Pacific Ocean. It is shown that the annual mean state of the SST and its variability are different over the tropical Pacific Ocean in the two operating modes of the model. These differences are symptoms of an inherent difference in the physics of coupled air–sea interactions and upper ocean variability. It is argued that in the presence of large coupled model errors and in the absence of coupled data assimilation, the competing and at times additive influence of the initialization and model errors can change the behavior of the air–sea interaction physics and upper ocean dynamics.

Nature ◽  
1996 ◽  
Vol 383 (6601) ◽  
pp. 610-613 ◽  
Author(s):  
Pierre J. Flament ◽  
Sean C. Kennan ◽  
Robert A. Knox ◽  
Pearn P. Niiler ◽  
Robert L. Bernstein

2016 ◽  
Author(s):  
Shouwen Zhang ◽  
Hua Jiang ◽  
Hui Wang ◽  
Ling Du ◽  
Dakui Wang

Abstract. Climate model results have shown that precipitation in the tropical Pacific Ocean will change up to 15 % and 25 % in one century. In this paper, both reanalysis data and climate model are used to study the response of global ocean and atmosphere to precipitation anomalies in the tropical Pacific Ocean. It shows that positive precipitation anomalies could trigger an El Nino-like SSTA response, with warmer SST in the east tropical Pacific Ocean and slightly cooler SST in the west tropical Pacific Ocean. The zonal tropical ocean currents change significantly, of which the magnitudes and directions are mainly relying on the intensity of the precipitation anomalies. Through a wave train encompassing the whole Northern Hemisphere named as the Circumglobal Waveguide Pattern (CWP), the North Atlantic atmospheric circulation responds to the freshwater anomalies in a NAO-like pattern. The anomalous atmospheric circulation transport sea ice to the North Atlantic Ocean. The sea ice melts in summer and freshen the upper ocean, which makes the ocean more stable. It thus constrains vertical heat transport and makes the upper water cooler, forming a significant positive feedback mechanism.


2021 ◽  
pp. 1-44
Author(s):  
Richard Seager ◽  
Naomi Henderson ◽  
Mark Cane ◽  
Honghai Zhang ◽  
Jennifer Nakamura

AbstractPersistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere-ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.


2019 ◽  
Vol 32 (23) ◽  
pp. 8205-8221
Author(s):  
Tarun Verma ◽  
R. Saravanan ◽  
P. Chang ◽  
S. Mahajan

Abstract The large-scale and long-term climate impacts of anthropogenic sulfate aerosols consist of Northern Hemisphere cooling and a southward shift of the tropical rain belt. On interannual time scales, however, the response to aerosols is localized with a sizable imprint on local ocean–atmosphere interaction. A large concentration of anthropogenic sulfates over Asia may impact ENSO by modifying processes and interactions that generate this coupled ocean–atmosphere variability. Here, we use climate model experiments with different degrees of ocean–atmosphere coupling to study the tropical Pacific response to an abrupt increase in anthropogenic sulfates. These include an atmospheric general circulation model (GCM) coupled to either a full-ocean GCM or a slab-ocean model, or simply forced by climatology of sea surface temperature. Comparing the responses helps differentiate between the fast atmospheric and slow ocean-mediated responses, and highlights the role of ocean–atmosphere coupling in the latter. We demonstrate the link between the Walker circulation and the equatorial Pacific upper-ocean dynamics in response to increased sulfate aerosols. The local surface cooling due to sulfate aerosols emitted over the Asian continent drives atmospheric subsidence over the equatorial west Pacific. The associated anomalous circulation imparts westerly momentum to the underlying Pacific Ocean, leading to an El Niño–like upper-ocean response and a transient warming of the east equatorial Pacific Ocean. The oceanic adjustment eventually contributes to its decay, giving rise to a damped oscillation of the tropical Pacific Ocean in response to abrupt anthropogenic sulfate aerosol forcing.


Nature ◽  
10.1038/36081 ◽  
1998 ◽  
Vol 391 (6670) ◽  
pp. 879-883 ◽  
Author(s):  
Rong-Hua Zhang ◽  
Lewis M. Rothstein ◽  
Antonio J. Busalacchi

2018 ◽  
Vol 45 (19) ◽  
Author(s):  
Dhrubajyoti Samanta ◽  
Kristopher B. Karnauskas ◽  
Nathalie F. Goodkin ◽  
Sloan Coats ◽  
Jason E. Smerdon ◽  
...  

2021 ◽  
Vol 40 (1) ◽  
pp. 113-125
Author(s):  
Wei Duan ◽  
Xuhua Cheng ◽  
Xiuhua Zhu ◽  
Tian Ma

Sign in / Sign up

Export Citation Format

Share Document