scholarly journals Coupled Ocean–Atmosphere Interaction and Variability in the Tropical Atlantic Ocean with and without an Annual Cycle

2008 ◽  
Vol 21 (21) ◽  
pp. 5501-5523 ◽  
Author(s):  
Susan C. Bates

Abstract Many previous studies point to a connection between the annual cycle and interannual variability in the tropical Atlantic Ocean. To investigate the importance of the annual cycle in the generation of tropical Atlantic variability (TAV) as well as its associated coupled feedback mechanisms, a set of controlled experiments is conducted using a global coupled ocean–atmosphere general circulation model (GCM) in which the climatological annual cycle is modified. An anomaly coupling strategy was developed to improve the model-simulated annual cycle and mean sea surface temperature (SST), which is critical to the experiments. Experiments include a control simulation in which the annual cycle is present and a fixed annual cycle simulation in which the coupled model is forced to remain in a perpetual annual mean state. Results reveal that the patterns of TAV, defined as the leading three rotated EOFs, and their relationship to coupled feedback mechanisms are present even in the absence of the annual cycle, suggesting that the generation of TAV is not dependent on the annual cycle. Each pattern of variability arises from an alteration of the easterly trade winds. Results suggest that it is the presence of these winds in the mean state that is the determining factor for the structure of the coupled ocean–atmosphere variability. Additionally, the patterns of variability persist longer in the simulation with no annual cycle. Most remarkable is the doubling of the decay phase related to the north tropical Atlantic variability, which is attributed to the persistence of the local wind–evaporation–sea surface temperature (WES) feedback mechanism. The author concludes that the annual cycle acts to cut off or interrupt conditions favorable for feedback mechanisms to operate, therefore putting a limit on the length of the event life cycle.

2010 ◽  
Vol 23 (3) ◽  
pp. 582-604 ◽  
Author(s):  
Susan C. Bates

Abstract Numerous studies and observational analyses point to a connection between the annual cycle and tropical Atlantic variability, specifically the influence of the seasons. Although a previous study has shown that the annual cycle is not necessary for the generation of this variability, this study demonstrates that the annual cycle provides particular conditions that modulate this variability. Particular seasons are investigated through the use of a coupled ocean–atmosphere model using anomaly coupling as the coupling strategy in order to control the mean state of the system. To isolate the influence of each season, the model is integrated in perpetuated mean states that simulate perpetual boreal spring, summer, fall, and winter seasonal mean states. These are compared to a control simulation that contains an annual cycle. Evidence is shown that the annual cycle modulates tropical Atlantic variability in the following three ways: 1) the background mean state for some seasons provides favorable conditions for the growth of particular patterns through regional air–sea feedback mechanisms, 2) mechanisms that excite the variability are seasonally dependent, and 3) the progression through the annual cycle is important for certain variabilities to be excited and grow.


2020 ◽  
Vol 47 (20) ◽  
Author(s):  
Arthur Prigent ◽  
Rodrigue Anicet Imbol Koungue ◽  
Joke F. Lübbecke ◽  
Peter Brandt ◽  
Mojib Latif

Sign in / Sign up

Export Citation Format

Share Document