scholarly journals Seasonal Influences on Coupled Ocean–Atmosphere Variability in the Tropical Atlantic Ocean

2010 ◽  
Vol 23 (3) ◽  
pp. 582-604 ◽  
Author(s):  
Susan C. Bates

Abstract Numerous studies and observational analyses point to a connection between the annual cycle and tropical Atlantic variability, specifically the influence of the seasons. Although a previous study has shown that the annual cycle is not necessary for the generation of this variability, this study demonstrates that the annual cycle provides particular conditions that modulate this variability. Particular seasons are investigated through the use of a coupled ocean–atmosphere model using anomaly coupling as the coupling strategy in order to control the mean state of the system. To isolate the influence of each season, the model is integrated in perpetuated mean states that simulate perpetual boreal spring, summer, fall, and winter seasonal mean states. These are compared to a control simulation that contains an annual cycle. Evidence is shown that the annual cycle modulates tropical Atlantic variability in the following three ways: 1) the background mean state for some seasons provides favorable conditions for the growth of particular patterns through regional air–sea feedback mechanisms, 2) mechanisms that excite the variability are seasonally dependent, and 3) the progression through the annual cycle is important for certain variabilities to be excited and grow.

2008 ◽  
Vol 21 (21) ◽  
pp. 5501-5523 ◽  
Author(s):  
Susan C. Bates

Abstract Many previous studies point to a connection between the annual cycle and interannual variability in the tropical Atlantic Ocean. To investigate the importance of the annual cycle in the generation of tropical Atlantic variability (TAV) as well as its associated coupled feedback mechanisms, a set of controlled experiments is conducted using a global coupled ocean–atmosphere general circulation model (GCM) in which the climatological annual cycle is modified. An anomaly coupling strategy was developed to improve the model-simulated annual cycle and mean sea surface temperature (SST), which is critical to the experiments. Experiments include a control simulation in which the annual cycle is present and a fixed annual cycle simulation in which the coupled model is forced to remain in a perpetual annual mean state. Results reveal that the patterns of TAV, defined as the leading three rotated EOFs, and their relationship to coupled feedback mechanisms are present even in the absence of the annual cycle, suggesting that the generation of TAV is not dependent on the annual cycle. Each pattern of variability arises from an alteration of the easterly trade winds. Results suggest that it is the presence of these winds in the mean state that is the determining factor for the structure of the coupled ocean–atmosphere variability. Additionally, the patterns of variability persist longer in the simulation with no annual cycle. Most remarkable is the doubling of the decay phase related to the north tropical Atlantic variability, which is attributed to the persistence of the local wind–evaporation–sea surface temperature (WES) feedback mechanism. The author concludes that the annual cycle acts to cut off or interrupt conditions favorable for feedback mechanisms to operate, therefore putting a limit on the length of the event life cycle.


2018 ◽  
Vol 123 (8) ◽  
pp. 5949-5970 ◽  
Author(s):  
Guillaume Gastineau ◽  
Juliette Mignot ◽  
Olivier Arzel ◽  
Thierry Huck

2018 ◽  
Vol 31 (22) ◽  
pp. 9107-9124 ◽  
Author(s):  
Asha K. Jordan ◽  
Anand Gnanadesikan ◽  
Benjamin Zaitchik

North Africa is the world’s largest source of mineral dust, and this dust has potentially significant impacts on precipitation. Yet there is no consensus in published studies regarding the sign or magnitude of dust impacts on rainfall in either the highly climate-sensitive Sahel region of North Africa or the neighboring tropical Atlantic Ocean. Here the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model 2 (GFDL CM2.0) with Modular Ocean Model, version 4.1 (MOM4.1), run at coarse resolution (CM2Mc) is applied to investigate one poorly characterized aspect of dust–precipitation dynamics: the importance of sea surface temperature (SST) changes in mediating the atmospheric response to dust. Two model experiments were performed: one comparing Dust-On to Dust-Off simulations in the absence of ocean–atmosphere coupling, and the second comparing Dust-On to Dust-Off with the ocean fully coupled. Results indicate that SST changes in the coupled experiment reduce the magnitude of dust impacts on Sahel rainfall and flip the sign of the precipitation response over the nearby ocean. Over the Sahel, CM2Mc simulates a net positive impact of dust on monsoon season rainfall, but ocean–atmosphere coupling in the presence of dust decreases the inflow of water vapor, reducing the amount by which dust enhances rainfall. Over the tropical Atlantic Ocean, dust leads to SST cooling in the coupled experiment, resulting in increased static stability that overrides the warming-induced increase in convection observed in the uncoupled experiment and yields a net negative impact of dust on precipitation. These model results highlight the potential importance of SST changes in dust–precipitation dynamics in North Africa and neighboring regions.


2016 ◽  
Vol 29 (15) ◽  
pp. 5417-5430 ◽  
Author(s):  
Chunxue Yang ◽  
Simona Masina ◽  
Alessio Bellucci ◽  
Andrea Storto

Abstract The rapid warming in the mid-1990s in the North Atlantic Ocean is investigated by means of an eddy-permitting ocean reanalysis. Both the mean state and variability, including the mid-1990s warming event, are well captured by the reanalysis. An ocean heat budget applied to the subpolar gyre (SPG) region (50°–66°N, 60°–10°W) shows that the 1995–99 rapid warming is primarily dictated by changes in the heat transport convergence term while the surface heat fluxes appear to play a minor role. The mean negative temperature increment suggests a warm bias in the model and data assimilation corrects the mean state of the model, but it is not crucial to reconstruct the time variability of the upper-ocean temperature. The decomposition of the heat transport across the southern edge of the SPG into time-mean and time-varying components shows that the SPG warming is mainly associated with both the anomalous advection of mean temperature and the mean advection of temperature anomalies across the 50°N zonal section. The relative contributions of the Atlantic meridional overturning circulation (AMOC) and gyre circulation to the heat transport are also analyzed. It is shown that both the overturning and gyre components are relevant to the mid-1990s warming. In particular, the fast adjustment of the barotropic circulation response to the NAO drives the anomalous transport of mean temperature at the subtropical/subpolar boundary, while the slowly evolving AMOC feeds the large-scale advection of thermal anomalies across 50°N. The persistently positive phase of the NAO during the years prior to the rapid warming likely favored the cross-gyre heat transfer and the following SPG warming.


2004 ◽  
Vol 17 (11) ◽  
pp. 2058-2077 ◽  
Author(s):  
Bohua Huang ◽  
Paul S. Schopf ◽  
J. Shukla

2004 ◽  
Vol 17 (24) ◽  
pp. 4708-4723 ◽  
Author(s):  
M. Biasutti ◽  
D. S. Battisti ◽  
E. S. Sarachik

Abstract A set of AGCM experiments is used to study the annual cycle of precipitation in the region surrounding the tropical Atlantic Ocean. The experiments are designed to reveal the relative importance of insolation over land and the (uncoupled) SST on the annual cycle of precipitation over the tropical Atlantic Ocean, Africa, and the tropical Americas. SST variations impact the position of the maritime ITCZ by forcing the hydrostatic adjustment of the atmospheric boundary layer and changes in surface pressure and low-level convergence. The condensation heating released in the ITCZ contributes substantially to the surface circulation and the maintenance of the SST-induced ITCZ anomalies. The remote influence of SST is felt in equatorial coastal areas and the Sahel. The circulation driven by condensation heating in the maritime ITCZ extends to the coastal regions, thus communicating the SST signal onshore. Conversely, the Sahel responds to variations in SST through boundary layer processes that do not involve the maritime ITCZ. The atmospheric response to changes in subtropical SST is advected inland and forces changes in sea level pressure and low-level convergence across a large part of tropical Africa. The impact of local insolation on continental precipitation can be explained by balancing net energy input at the top of the atmospheric column with the export of energy by the divergent circulation that accompanies convection. Increased insolation reduces the stability of the atmosphere in the main continental convection centers, but not in monsoon regions. Insolation over land impacts the intensity of the maritime ITCZ via its influence on precipitation in Africa and South America. Reduced land precipitation induces the cooling of the Atlantic upper troposphere and the enhancement of convective available potential energy in the maritime ITCZ.


2013 ◽  
Vol 70 (3) ◽  
pp. 876-893 ◽  
Author(s):  
Pallav Ray ◽  
Tim Li

Abstract A set of atmospheric general circulation model (GCM) experiments is designed to explore the relative roles of the circumnavigating waves and the extratropics on the Madden–Julian oscillation (MJO). In a “control” simulation, the model is forced by the climatological monthly sea surface temperature for 20 yr. In the first sensitivity experiment, model prognostic variables are relaxed in the tropical Atlantic region (20°S–20°N, 80°W–0°) toward the “controlled” climatological annual cycle to suppress the influences from the circumnavigating waves. In the second sensitivity experiment, model prognostic variables are relaxed in the 20°–30° latitude zones toward the controlled climatological annual cycle to suppress the influences from the extratropics (or the tropics–extratropics interactions). The numerical results demonstrate that the extratropics play a more important role in maintaining the MJO variance than the circumnavigating waves. The simulations further show that both the tropical mean precipitation and the intraseasonal precipitation variability are reduced when the extratropical influences are suppressed. The in-phase relationship is primarily attributed to the effect of the mean state on perturbations. A moisture budget analysis indicates that a positive feedback to the mean precipitation by the anomalous moisture convergence is offset by a negative feedback due to the anomalous moisture advection. The change in the mean precipitation in the absence of extratropical influences is primarily determined by the change in the mean moisture convergence, which in turn is due to the change in circulation. This study is the first attempt to quantitatively separate the effects of the circumnavigating waves and the extratropics on the MJO. Implications and limitations of this study are discussed.


Sign in / Sign up

Export Citation Format

Share Document