Nonreflecting Internal Wave Beam Propagation in the Deep Ocean

2010 ◽  
Vol 40 (4) ◽  
pp. 802-813 ◽  
Author(s):  
Roger Grimshaw ◽  
Efim Pelinovsky ◽  
Tatiana Talipova

Abstract Using linear internal wave theory for an ocean stratified by both density and current, several background profiles are identified for which internal wave beams can propagate without any internal reflection. These special profiles are favorably compared with available oceanic data.

2017 ◽  
Vol 98 (11) ◽  
pp. 2429-2454 ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Zhongxiang Zhao ◽  
Caitlin B. Whalen ◽  
Amy F. Waterhouse ◽  
David S. Trossman ◽  
...  

Abstract Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.


2020 ◽  
Vol 70 (11) ◽  
pp. 1357-1376
Author(s):  
Georg S. Voelker ◽  
Dirk Olbers ◽  
Maren Walter ◽  
Christian Mertens ◽  
Paul G. Myers

Abstract Energy transfer mechanisms between the atmosphere and the deep ocean have been studied for many years. Their importance to the ocean’s energy balance and possible implications on mixing are widely accepted. The slab model by Pollard (Deep-Sea Res Oceanogr Abstr 17(4):795–812, 1970) is a well-established simulation of near-inertial motion and energy inferred through wind-ocean interaction. Such a model is set up with hourly wind forcing from the NCEP-CFSR reanalysis that allows computations up to high latitudes without loss of resonance. Augmenting the one-dimensional model with the horizontal divergence of the near-inertial current field leads to direct estimates of energy transfer spectra of internal wave radiation from the mixed layer base into the ocean interior. Calculations using this hybrid model are carried out for the North Atlantic during the years 1989 and 1996, which are associated with positive and negative North Atlantic Oscillation index, respectively. Results indicate a range of meridional regimes with distinct energy transfer ratios. These are interpreted in terms of the mixed layer depth, the buoyancy frequency at the mixed layer base, and the wind field structure. The average ratio of radiated energy fluxes from the mixed layer to near-inertial wind power for both years is approximately 12%. The dependence on the wind structure is supported by simulations of idealized wind stress fronts with variable width and translation speeds.


2019 ◽  
Vol 49 (5) ◽  
pp. 1229-1248 ◽  
Author(s):  
Qiang Li ◽  
Xianzhong Mao ◽  
John Huthnance ◽  
Shuqun Cai ◽  
Samuel Kelly

AbstractReflection and transmission of normally incident internal waves propagating across a geostrophic front, like the Kuroshio or Gulf Stream, are investigated using a modified linear internal wave equation. A transformation from depth to buoyancy coordinates converts the equation to a canonical partial differential equation, sharing properties with conventional internal wave theory in the absence of a front. The equation type is determined by a parameter Δ, which is a function of horizontal and vertical gradients of buoyancy, the intrinsic frequency of the wave, and the effective inertial frequency, which incorporates the horizontal shear of background geostrophic flow. In the Northern Hemisphere, positive vorticity of the front may produce Δ ≤ 0, that is, a “forbidden zone,” in which wave solutions are not permitted. Thus, Δ = 0 is a virtual boundary that causes wave reflection and refraction, although waves may tunnel through forbidden zones that are weak or narrow. The slope of the surface and bottom boundaries in buoyancy coordinates (or the slope of the virtual boundary if a forbidden zone is present) determine wave reflection and transmission. The reflection coefficient for normally incident internal waves depends on rotation, isopycnal slope, topographic slope, and incident mode number. The scattering rate to high vertical modes allows a bulk estimate of the mixing rate, although the impact of internal wave-driven mixing on the geostrophic front is neglected.


2009 ◽  
Vol 639 ◽  
pp. 133-152 ◽  
Author(s):  
MANIKANDAN MATHUR ◽  
THOMAS PEACOCK

In addition to being observable in laboratory experiments, internal wave beams are reported in geophysical settings, which are characterized by non-uniform density stratifications. Here, we perform a combined theoretical and experimental study of the propagation of internal wave beams in non-uniform density stratifications. Transmission and reflection coefficients, which can differ greatly for different physical quantities, are determined for sharp density-gradient interfaces and finite-width transition regions, accounting for viscous dissipation. Thereafter, we consider even more complex stratifications to model geophysical scenarios. We show that wave beam ducting can occur under conditions that do not necessitate evanescent layers, obtaining close agreement between theory and quantitative laboratory experiments. The results are also used to explain recent field observations of a vanishing wave beam at the Keana Ridge, Hawaii.


Sign in / Sign up

Export Citation Format

Share Document