scholarly journals A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval

2009 ◽  
Vol 137 (11) ◽  
pp. 3992-4010 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Ya-Ju Chang

Abstract A multiple–Doppler radar synthesis method is developed to recover the three-dimensional wind field. In this method the solutions are obtained by variationally adjusting the winds to satisfy a series of constraints in weak formats. Among them, the primary ones are multiple-radar radial velocity observations, the anelastic continuity equation, the vertical vorticity equation, the background wind, and spatial smoothness terms. The retrieved wind products are at two time levels, and can be readily applied to deduce the information about the pressure and temperature through the use of the thermodynamic retrieval algorithm, in which the temporal derivatives of the wind fields are required. Experiments using model-simulated data are conducted, from which two major findings are obtained. First, the wind field along and near the radar baseline can still be recovered. This is a major advantage over the traditional approach. Therefore, the proposed method is capable of providing uninterrupted observations of a weather system as it passes the baseline. This allows for more flexibility when designing the radar deployment in field experiments. Second, if the winds are applied to infer the thermodynamic fields using the traditional dynamic retrieval method, and an extra sounding (e.g., radiosonde or dropsonde) is combined in order to specify the horizontal average of the thermodynamic perturbations, the preferable place to release this sounding is within the region of weak, rather than strong, convection. In additional to the aforementioned findings, with this method there is no need to prescribe the top or bottom boundary conditions for the vertical velocities in the traditional sense. Since the computation is performed without explicit vertical integration of the continuity equation, the problem of error accumulation due to inappropriate boundary conditions for the vertical velocities is prevented. These finding are consistent with some previous publications. Furthermore, the instability that occurs during traditional iterative dual-Doppler wind synthesis based on a Cartesian coordinate can also be avoided. Finally, data from any number of radars can be easily added to the computation. This method is also tested using the radar datasets collected during the Southwest Monsoon Experiment/Terrain-Influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX), which was conducted from May to June 2008 in Taiwan, and reasonable results are obtained.

2010 ◽  
Vol 3 (5) ◽  
pp. 4459-4495 ◽  
Author(s):  
C. López Carrillo ◽  
D. J. Raymond

Abstract. In this work, we describe an efficient approach for wind retrieval from dual Doppler radar data. The approach produces a gridded field that not only satisfies the observations, but also satisfies the anelastic mass continuity equation. The method is based on the so-called three-dimensional variational approach to the retrieval of wind fields from radar data. The novelty consists in separating the task into steps that reduce the amount of data processed by the global minimization algorithm, while keeping the most relevant information from the radar observations. The method is flexible enough to incorporate observations from several radars, accommodate complex sampling geometries, and readily include dropsonde or sounding observations in the analysis. We demonstrate the usefulness of our method by analyzing a real case with data collected during the TPARC/TCS-08 field campaign.


2012 ◽  
Vol 140 (5) ◽  
pp. 1603-1619 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Shao-Fan Chang ◽  
Juanzhen Sun

This study develops an extension of a variational-based multiple-Doppler radar synthesis method to construct the three-dimensional wind field over complex topography. The immersed boundary method (IBM) is implemented to take into account the influence imposed by a nonflat surface. The IBM has the merit of providing realistic topographic forcing without the need to change the Cartesian grid configuration into a terrain-following coordinate system. Both Dirichlet and Neumann boundary conditions for the wind fields can be incorporated. The wind fields above the terrain are obtained by variationally adjusting the solutions to satisfy a series of weak constraints, which include the multiple-radar radial velocity observations, anelastic continuity equation, vertical vorticity equation, background wind, and spatial smoothness terms. Experiments using model-simulated data reveal that the flow structures over complex orography can be successfully retrieved using radial velocity measurements from multiple Doppler radars. The primary advantages of the original synthesis method are still maintained, that is, the winds along and near the radar baseline are well retrieved, and the resulting three-dimensional flow fields can be used directly for vorticity budget diagnosis. If compared with the traditional wind synthesis algorithm, this method is able to merge data from different sources, and utilize data from any number of radars. This provides more flexibility in designing various scanning strategies, so that the atmosphere may be probed more efficiently using a multiple-radar network. This method is also tested using the radar data collected during the Southwest Monsoon Experiment (SoWMEX), which was conducted in Taiwan from May to June 2008 with reasonable results being obtained.


2020 ◽  
Author(s):  
Ting-Yu Cha ◽  
Michael M. Bell

Abstract. Hurricane Matthew (2016) was observed by the NEXRAD KAMX polarimetric radar and NOAA P-3 airborne radar near the coast of the southeastern United States for several hours, providing a novel opportunity to evaluate and compare single and multiple Doppler wind retrieval techniques for tropical cyclone flows. The generalized velocity track display (GVTD) technique can retrieve a subset of the wind field from a single ground-based Doppler radar under the assumption of nearly axisymmetric rotational wind, but is shown to have errors from aliasing of unresolved wind components. An improved technique that mitigates errors due to storm motion is derived in this study, although some spatial aliasing remains due to limited information content from the single Doppler measurements. A spline-based variational wind retrieval technique called SAMURAI can retrieve the full three-dimensional wind field from airborne radar fore-aft pseudo-dual Doppler scanning, but is shown to have errors due to temporal aliasing from the non-simultaneous Doppler measurements. A comparison between the two techniques shows that the axisymmetric tangential winds are generally comparable between the two techniques after the improvements to GVTD retrievals. Fourier decomposition of asymmetric kinematic and convective structure shows more discrepancies due to spatial and temporal aliasing in the retrievals. The advantages and disadvantages of each technique for studying tropical cyclone structure are discussed, and suggest that complementary information can be retrieved from both single and multiple Doppler retrievals. Future improvements to the asymmetric flow assumptions in single Doppler analysis and steady-state assumptions in pseudo-dual Doppler analysis are required to reconcile differences in retrieved tropical cyclone structure.


2011 ◽  
Vol 4 (12) ◽  
pp. 2717-2733 ◽  
Author(s):  
C. López Carrillo ◽  
D. J. Raymond

Abstract. In this work, we describe an efficient approach for wind retrieval from dual Doppler radar data. The approach produces a gridded field that not only satisfies the observations, but also satisfies the anelastic mass continuity equation. The method is based on the so-called three-dimensional variational approach to the retrieval of wind fields from radar data. The novelty consists in separating the task into steps that reduce the amount of data processed by the global minimization algorithm, while keeping the most relevant information from the radar observations. The method is flexible enough to incorporate observations from several radars, accommodate complex sampling geometries, and readily include dropsonde or sounding observations in the analysis. We demonstrate the usefulness of our method by analyzing a real case with data collected during the TPARC/TCS-08 field campaign.


2016 ◽  
Vol 144 (7) ◽  
pp. 2645-2666
Author(s):  
Christopher Melhauser ◽  
Fuqing Zhang

Abstract Based on established coplane methodology, a simplified three-dimensional wind retrieval algorithm is proposed to derive two-dimensional wind vectors from radial velocity observations by the tail Doppler radars on board the NOAA P3 hurricane reconnaissance aircraft. Validated against independent in situ flight-level and dropsonde observations before and after genesis of Hurricane Karl (2010), each component of the retrieved wind vectors near the aircraft track has an average error of approximately 1.5 m s−1, which increases with the scanning angle and distance away from the aircraft track. Simulated radial velocities derived from a convection-permitting simulation of Karl are further used to systematically quantify errors of the simplified coplane algorithm. The accuracy of the algorithm is strongly dependent on the time between forward and backward radar scans and to a lesser extent, the zero vertical velocity assumption at large angles relative to a plane parallel with the aircraft wings. A proof-of-concept experiment assimilating the retrieved wind vectors with an ensemble Kalman filter shows improvements in track and intensity forecasts similar to assimilating radial velocity super observations or the horizontal wind vectors from the analysis retrievals provided by the Hurricane Research Division of NOAA. Future work is needed to systematically evaluate this simplified coplane algorithm with proper error characteristics for TC initialization and prediction through a large number of events to establish statistical significance.


Sign in / Sign up

Export Citation Format

Share Document