scholarly journals Characterizing the Variability and Extremes of the Stratospheric Polar Vortices Using 2D Moment Analysis

2011 ◽  
Vol 68 (6) ◽  
pp. 1194-1213 ◽  
Author(s):  
Daniel M. Mitchell ◽  
Andrew J. Charlton-Perez ◽  
Lesley J. Gray

Abstract The mean state, variability, and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere (NH) vortex, are examined using two-dimensional moment analysis and extreme value theory (EVT). The use of moments as an analysis tool gives rise to information about the vortex area, centroid latitude, aspect ratio, and kurtosis. The application of EVT to these moment-derived quantities allows the extreme variability of the vortex to be assessed. The data used for this study are 40-yr ECMWF Re-Analysis (ERA-40) potential vorticity fields on interpolated isentropic surfaces that range from 450 to 1450 K. Analyses show that the most extreme vortex variability occurs most commonly in late January and early February, consistent with when most planetary wave driving from the troposphere is observed. Composites around sudden stratospheric warming (SSW) events reveal that the moment diagnostics evolve in statistically different ways between vortex splitting events and vortex displacement events, in contrast to the traditional diagnostics. Histograms of the vortex diagnostics on the 850-K (~10 hPa) surface over the 1958–2001 period are fitted with parametric distributions and show that SSW events constitute the majority of data in the tails of the distributions. The distribution of each diagnostic is computed on various surfaces throughout the depth of the stratosphere; it shows that in general the vortex becomes more circular with higher filamentation at the upper levels. The Northern and Southern Hemisphere (SH) vortices are also compared through the analysis of their respective vortex diagnostics, confirming that the SH vortex is less variable and lacks extreme events compared to the NH vortex. Finally, extreme value theory is used to statistically model the vortex diagnostics and make inferences about the underlying dynamics of the polar vortices.

2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Kshitij Sharma ◽  
Valérie Chavez-Demoulin ◽  
Pierre Dillenbourg

The statistics used in education research are based on central trends such as the mean or standard deviation, discarding outliers. This paper adopts another viewpoint that has emerged in Statistics, called the Extreme Value Theory (EVT). EVT claims that the bulk of the normal distribution is mostly comprised of uninteresting variations while the most extreme values convey more information. We applied EVT to eye-tracking data collected during online collaborative problem solving with the aim of predicting the quality of collaboration. We compare our previous approach, based on central trends, with an EVT approach focused on extreme episodes of collaboration. The latter occurred to provide a better prediction of the quality of collaboration.


2018 ◽  
Vol 12 (2) ◽  
pp. 13-23
Author(s):  
Maria Nedealcov ◽  
Valentin Răileanu ◽  
Gheorghe Croitoru ◽  
Cojocari Rodica ◽  
Crivova Olga

Abstract Extreme climatic phenomena present risk factors for agriculture, health, constructions, etc. and are studied profoundly these past years using extreme value theory. Several relation that describe positive extreme values’ probability Generalized Extreme Value and Gumbel distribution are presented in the article. As a example, we show the maps of characteristic and reference values of the maximum depth of the frozen soil and thickness of hoar-frost with a probability of exceeding per year equal to 0,02, which is equivalent to the mean return interval of 50 years. The obtained results could serve as a base for elaboration of national annexes in constructions.


Sign in / Sign up

Export Citation Format

Share Document