return interval
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 12 (2) ◽  
pp. 11
Author(s):  
Luís A. Pungulanhe ◽  
Natasha S. Ribeiro ◽  
Tomázia M. C. Veterano

Fires occur in a widespread manner in various types of vegetation cover at national level, and are often associated with human hunting, grazing and above all the practice of itinerant agriculture. With the purpose to propose the map of frequency of fire, remote sensing data was collected from 2014 to 2018, using the Moderate Resolution Image Spectroradiometer (MODIS) of the burned area (MCD64A1), which allowed the construction of the map of frequency and intensity of fires, associated with data collected in 59 plots on field. It was observed that the Gilé National Park (PNAG) records an average fire frequency of 0.38 times/year and the return interval of 5.38 years, and an average fire return interval of 2.62 years. During the study period, the PNAG burned 92.8% of the area, which means that on average for each year it burned about 18.56% of its area, there are no significant differences in relation to the area burned per year (p> 0.942037) but there are significant differences in relation to the area burned per month (p <1.24e-07).


Ecosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Steven A. Flanagan ◽  
J. Kevin Hiers ◽  
Mac A. Callaham ◽  
Scott Goodrick ◽  
Joseph J. O’Brien ◽  
...  

Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Chris Bowman-Prideaux ◽  
Beth A. Newingham ◽  
Eva K. Strand

Wildfire size and frequency have increased in the western United States since the 1950s, but it is unclear how seeding treatments have altered fire regimes in arid steppe systems. We analyzed how the number of fires since 1955 and the fire return interval and frequency between 1995 and 2015 responded to seeding treatments, anthropogenic features, and abiotic landscape variables in Wyoming big sagebrush ecosystems. Arid sites had more fires than mesic sites and fire return intervals were shortest on locations first treated between 1975 and 2000. Sites drill seeded before the most recent fire had fewer, less frequent fires with longer fire return intervals (15–20 years) than aerially seeded sites (intervals of 5–8 years). The response of fire regime variables at unseeded sites fell between those of aerial and drill seeding. Increased moisture availability resulted in decreased fire frequency between 1994 and 2014 and the total number of fires since 1955 on sites with unseeded and aerially pre-fire seeding, but fire regimes did not change when drill seeded. Greater annual grass biomass likely contributed to frequent fires in the arid region. In Wyoming big sagebrush steppe, drill seeding treatments reduced wildfire risk relative to aerial seeded or unseeded sites.


2021 ◽  
Author(s):  
Vincent Tamisier ◽  
Frédéric Gob ◽  
Emmanuèle Gautier ◽  
Geoffrey Houbrechts ◽  
Thomas Dépret

&lt;p&gt;Assessing the impact of weirs in low- to medium-energy rivers, especially their influence on the bedload continuity, is an important issue for the understanding and management of river hydrosystems. The implementation of European regulations has for example led to an increasing number of restoration projects involving the total or partial dismantling of weirs. The effect of weirs on sedimentary continuity is beginning to be studied but remains poorly understood. In this study we present the results of monitoring over three hydrological seasons of 900 particles equipped with PIT tags set up around two weirs on the Rognon river (France) and the Ambl&amp;#232;ve river (Belgium). For the two sites studied, and while floods were relatively frequent (max 5 return-interval years for the Rognon River and 2 return-interval years for the Ambl&amp;#232;ve River), nearly 80% of the tagged particles positioned just upstream of the weirs were exported downstream of them during the study period. However, the tagged particles in the control reaches, non-influenced by weirs, travelled distances 2 to 2.5 times greater than the particles injected in the impoundment. Mobilisation rates are also significantly higher in the control reaches. Whereas the size of the mobilised particles (D50, D90) is similar between the impoundment and the control reaches in the Ambl&amp;#232;ve river, mobilised particles are significantly smaller in the impoundment reach in the Rognon river. This data indicates that these weirs can have a significant effect by slowing down the bed load velocity, especially its coarsest part. Nevertheless, in the current weir operating, weirs do not interrupt the bedload continuity. This type of structure does not seem to constitute a real obstacle to sedimentary continuity and the question of their dismantling may be raised in view of the potential impacts they could have on the other components of ecological continuity.&lt;/p&gt;


2021 ◽  
Vol 21 (2) ◽  
pp. 533-557
Author(s):  
Erich Peitzsch ◽  
Jordy Hendrikx ◽  
Daniel Stahle ◽  
Gregory Pederson ◽  
Karl Birkeland ◽  
...  

Abstract. Snow avalanches affect transportation corridors and settlements worldwide. In many mountainous regions, robust records of avalanche frequency and magnitude are sparse or non-existent. However, dendrochronological methods can be used to fill this gap and infer historical avalanche patterns. In this study, we developed a tree-ring-based avalanche chronology for large magnitude avalanche events (size ≥∼D3) using dendrochronological techniques for a portion of the US northern Rocky Mountains. We used a strategic sampling design to examine avalanche activity through time and across nested spatial scales (i.e., from individual paths, four distinct subregions, and the region). We analyzed 673 samples in total from 647 suitable trees collected from 12 avalanche paths from which 2134 growth disturbances were identified over the years 1636 to 2017 CE. Using existing indexing approaches, we developed a regional avalanche activity index to discriminate avalanche events from noise in the tree-ring record. Large magnitude avalanches, common across the region, occurred in 30 individual years and exhibited a median return interval of approximately 3 years (mean = 5.21 years). The median large magnitude avalanche return interval (3–8 years) and the total number of avalanche years (12–18) varies throughout the four subregions, suggesting the important influence of local terrain and weather factors. We tested subsampling routines for regional representation, finding that sampling 8 random paths out of a total of 12 avalanche paths in the region captures up to 83 % of the regional chronology, whereas four paths capture only 43 % to 73 %. The greatest value probability of detection for any given path in our dataset is 40 %, suggesting that sampling a single path would capture no more than 40 % of the regional avalanche activity. Results emphasize the importance of sample size, scale, and spatial extent when attempting to derive a regional large magnitude avalanche event chronology from tree-ring records.


2020 ◽  
Vol 28 (4) ◽  
pp. 387-414
Author(s):  
Anthony R. Taylor ◽  
David A. MacLean ◽  
Peter D. Neily ◽  
Bruce Stewart ◽  
Eugene Quigley ◽  
...  

Like many jurisdictions across North America, the province of Nova Scotia (NS) is faced with the challenge of restoring its forests to a more natural, presettlement state through implementation of ecological forestry. At the core of ecological forestry is the idea that natural forest structures and processes may be approximated by designing management practices that emulate natural disturbances. Successful natural disturbance emulation depends on fundamental knowledge of disturbance characteristics, including identification of specific disturbance agents, their spatial extent, severity, and return interval. To date, no comprehensive synthesis of existing data has been undertaken to document the natural disturbance regime of NS forests, limiting the application of natural disturbance emulation. Using over 300 years of documents and available data, we identified the main natural disturbance agents that affect NS forests and characterized their regimes. Overall, fire, wind (predominantly hurricanes), and outbreaks of spruce budworm (Choristoneura fumiferana (Clemens)) are the most important disturbance agents, causing substantial areas of low- (<30% mortality), moderate- (30%–60%), and high- (>60%) severity disturbance. While characterization of natural historic fire is challenging, due to past human ignitions and suppression, we estimated that the mean annual disturbance rate of moderate- to high-severity fire ranged between 0.17% and 0.4%·year−1 (return interval of 250–600 years), depending on ecosystem type. Hurricanes make landfall in NS, on average, every 7 years, resulting in wide-scale (>500 ha) forest damage. While hurricane track and damage severity vary widely among storms, the return interval of low- to high-severity damage is 700–1250 years (0.14%–0.08%·year−1). Conversely, the return interval of host-specific spruce budworm outbreaks is much shorter (<50 years) but more periodic, causing wide-scale, low- to high-severity damage to spruce–fir forests every 30–40 years. Further disturbance agents such as other insects (e.g., spruce beetle), diseases, ice storms, drought, and mammals can be locally important and (or) detrimental to individual tree species but contribute little to overall disturbance in NS. Climate change is expected to significantly alter the disturbance regime of NS, affecting current disturbances (e.g., increased fire) and driving the introduction of novel agents (e.g., hemlock wooly adelgid), and continued monitoring is needed to understand these changes.


2020 ◽  
Author(s):  
Erich Peitzsch ◽  
Jordy Hendrikx ◽  
Daniel Stahle ◽  
Gregory Pederson ◽  
Karl Birkeland ◽  
...  

Abstract. Snow avalanches affect transportation corridors and settlements worldwide. In many mountainous regions, robust records of avalanche frequency and magnitude are sparse or non-existent. However, dendrochronological methods can be used to fill this gap and infer historic avalanche patterns. In this study, we developed a tree-ring based avalanche chronology for large magnitude avalanche events using dendrochronological techniques for a sub-region of the northern United States Rocky Mountains. We used a strategic sampling design to examine avalanche activity through time and across nested spatial scales (i.e. from individual paths, four distinct sub-regions, and the region). We analysed 673 total samples from 647 suitable trees collected from 12 avalanche paths, from which 2,134 growth disturbances were identified over years 1636 to 2017 Common Era (C.E.). Using existing indexing approaches, we developed a regional avalanche activity index to discriminate avalanche events from noise in the tree-ring record. Large magnitude avalanches common across the region occurred in 30 individual years and exhibited a median return interval of approximately three years (mean = 5.21 years). The median large magnitude avalanche return interval (3–8 years) and the total number of avalanche years (12–18) vary throughout the four sub-regions, suggesting the important influence of local terrain and weather factors. We tested subsampling routines for regional representation, finding that sampling eight random paths out of a total of 12 avalanche paths in the region captures up to 83 % of the regional chronology, whereas four paths capture only 43 % to 73 %. The greatest value probability of detection for any given path in our dataset is 40 % suggesting that sampling a single path would capture no more than 40 % of the regional avalanche activity. Results emphasize the importance of sample size, scale, and spatial extent when attempting to derive a regional large magnitude avalanche event chronology from tree-ring records.


2020 ◽  
Vol 26 (4) ◽  
pp. 393-404
Author(s):  
Jeanette Newmiller ◽  
Wesley Walker ◽  
William E. Fleenor ◽  
Nicholas Pinter

ABSTRACT In March 2015, the village of San Pablo de Amalí on the Dulcepamba River in Ecuador was hit by a flood that killed three residents, destroyed five homes, and eroded several hectares of farmland. Residents asserted that the recent construction of a run-of-the-river hydroelectric facility built in the river channel directed flood flows toward the village, causing the associated damage and fatalities. We conducted a forensic hydrologic and hydraulic analysis of the catchment to assess potential causal mechanisms affecting flooding, including the construction of the hydroelectric facility. Hydrologic analysis demonstrated that the river flows produced by the March 2015 storm were equivalent to a 6-year return interval event, with a discharge of 58.6 cms, not the much more extreme 33-year return interval, 400-cms event that had been suggested in a report produced by the hydroelectric company. Hydraulic modeling determined an ∼2-m elevation surcharge of water attributable to the hydroelectric facility, suggesting that damage to the village would not have occurred without the obstruction created by debris blockage of the hydroelectric plant intake. Hydrologic modeling also quantified monthly totals of water availability in the Dulcepamba watershed, including average dry-season flow volumes. When compared to flow volumes allocated to the hydroelectric operator, the modeling indicated that the seasonal water availability in the Dulcepamba watershed is not sufficient to collectively meet the minimum in-stream environmental flow requirements, the agriculture demands from local subsistence irrigators, and the flow volumes allocated to the hydroelectric operator.


2020 ◽  
Vol 29 (10) ◽  
pp. 919
Author(s):  
Jonathan Stober ◽  
Krista Merry ◽  
Pete Bettinger

Fire is an essential ecological process and management tool for many forested landscapes, particularly the pine (Pinus spp.) forests of the southern USA. Within the Talladega National Forest in Alabama, where restoration and maintenance of pine ecosystems is a priority, fire frequency (both wild and prescribed) was assessed using a geographical process applied to a fire history database. Two methods for assessing fire frequency were employed: (1) a simple method that utilised the entire range of years acknowledged in the database and (2) a conservative method that was applied only the date of the first and last fires recorded at each location. Analyses were further separated by (a) method of mean fire return interval calculation (weighted by area or Weibull) and (b) fire season interval with analyses conducted on growing season and dormant season fires. Analyses of fire frequency for national forest planning purposes may help determine whether a prescribed fire program mimics ecological and historical fire frequencies and meets intended objectives. The estimated fire return interval was between ~5 and 6.5 years using common, straightforward (simple) methods. About one-third of the forest receives no fire management and about half of the balance has sufficiently managed fuels.


Systems ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 49 ◽  
Author(s):  
Thompson ◽  
Wei ◽  
Dunn ◽  
O’Connor

In this paper, we develop a systems dynamics model of a coupled human and natural fire-prone system to evaluate changes in wildfire response policy. A primary motivation is exploring the implications of expanding the pace and scale of using wildfires as a forest restoration tool. We implement a model of a forested system composed of multiple successional classes, each with different structural characteristics and propensities for burning at high severity. We then simulate a range of alternative wildfire response policies, which are defined as the combination of a target burn rate (or inversely, the mean fire return interval) and a predefined transition period to reach the target return interval. We quantify time paths of forest successional stage distributions, burn severity, and ecological departure, and use departure thresholds to calculate how long it would take various policies to restore forest conditions. Furthermore, we explore policy resistance where excessive rates of high burn severity in the policy transition period lead to a reversion to fire exclusion policies. Establishing higher burn rate targets shifted vegetation structural and successional classes towards reference conditions and suggests that it may be possible to expand the application of wildfires as a restoration tool. The results also suggest that managers may be best served by adopting strategies that define aggressive burn rate targets but by implementing policy changes slowly over time.


Sign in / Sign up

Export Citation Format

Share Document