Estimating the Sensitivity of Radiative Impacts of Shallow, Broken Marine Clouds to Boundary Layer Aerosol Size Distribution Parameter Uncertainties for Evaluation of Satellite Retrieval Requirements

2011 ◽  
Vol 28 (4) ◽  
pp. 530-538 ◽  
Author(s):  
Ann M. Fridlind ◽  
Andrew S. Ackerman

Abstract A proposed objective of the planned Aerosol–Cloud–Ecosystem (ACE) satellite mission is to provide constraints on climate model representation of aerosol effects on clouds by retrieving profiles of aerosol number concentration, effective variance, and effective radius over the 0.1–1-μm radius range under humidified ambient conditions with 500-m vertical resolution and uncertainties of 100%, 50%, and 10%, respectively. Shallow, broken marine clouds provide an example of conditions where boundary layer aerosol properties would be retrieved in clear-sky gaps. To quantify the degree of constraint that proposed retrievals might provide on cloud radiative forcing (CRF) simulated by climate models under such conditions, dry aerosol size distribution parameters are independently varied here in large-eddy simulations of three well-established modeling case studies. Using the rudimentary available aerosol specifications, it is found that relative changes of total dry aerosol properties in simulations can be used as a proxy for relative changes of ambient aerosol properties targeted by ACE retrievals. The sensitivity of simulated daytime shortwave CRF to the proposed uncertainty in retrieved aerosol number concentration is −15 W m−2 in the overcast limit, roughly a factor of 2 smaller than a simple analytic estimate owing primarily to aerosol-induced reductions in simulated liquid water path across this particular set of case studies. The CRF sensitivity to proposed uncertainties in retrieved aerosol effective variance and effective radius is typically far smaller, with no corresponding analytic estimate. Generalization of the results obtained here using only three case studies would require statistical analysis of relevant meteorological and aerosol observations and quantification of observational and model uncertainties and biases.

2010 ◽  
Vol 10 (6) ◽  
pp. 15629-15670
Author(s):  
P. Shrestha ◽  
A. P. Barros ◽  
A. Khlystov

Abstract. Aerosol particle number size distribution and chemical composition were measured at two low altitude sites, one urban and one relatively pristine valley, in Central Nepal during the 2009 pre-monsoon season (May–June). This is the first time that aerosol size distribution and chemical composition were measured simultaneously at lower elevation in the Middle Himalayan region in Nepal. The aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS, 14~340 nm), and the chemical composition of the filter samples collected during the field campaign was analyzed in the laboratory. Teflon membrane filters were used for ion chromatography (IC) and water-soluble organic carbon and nitrogen analysis. Quartz fiber filters were used for organic carbon and elemental carbon analysis. Multi-lognormal fits to the measured aerosol size distribution indicated a consistent larger mode around 100 nm which is usually the oldest, most processed background aerosol. The smaller mode was located around 20 nm, which is indicative of fresh but not necessarily local aerosol. The diurnal cycle of the aerosol number concentration showed the presence of two peaks (early morning and evening), during the transitional period of boundary layer growth and collapse. The increase in number concentration during the peak period was observed for the entire size distribution. Although the possible contribution of local emissions in size ranges similar to the larger mode cannot be completely ruled out, another plausible explanation is the mixing of aged elevated aerosol in the residual layer during the morning period as suggested by previous studies. Similarly, the evening time concentration peaks when the boundary layer becomes shallow concurrent with increase in local activity. A decrease in aerosol number concentration was observed during the nighttime with the development of cold (downslope) mountain winds that force the low level warmer air in the valley to rise. The mountain valley wind mechanisms induced by the topography along with the valley geometry appear to have a strong control in the diurnal cycle of the aerosol size distribution. During the sampling period, the chemical composition of PM2.5 was dominated by organic matter at both sites. Organic carbon (OC) comprised the major fraction (64~68%) of the aerosol concentration followed by ionic species (24~26% mainly SO42- and NH4+). Elemental Carbon (EC) compromised 7~10% of the total composition. A large fraction of OC was found to be water soluble (nearly 27% at both sites).


2010 ◽  
Vol 10 (23) ◽  
pp. 11605-11621 ◽  
Author(s):  
P. Shrestha ◽  
A. P. Barros ◽  
A. Khlystov

Abstract. Aerosol particle number size distribution and chemical composition were measured at two low altitude sites, one urban and one relatively pristine valley, in Central Nepal during the 2009 pre-monsoon season (May–June). This is the first time that aerosol size distribution and chemical composition were measured simultaneously at lower elevations in the middle Himalayan region in Nepal. The aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS, 14–340 nm), and the chemical composition of the filter samples collected during the field campaign was analyzed in the laboratory. Teflon membrane filters were used for ion chromatography (IC) and water-soluble organic carbon and nitrogen analysis. Quartz fiber filters were used for organic carbon and elemental carbon analysis. Multi-lognormal fits to the measured aerosol size distribution indicated a consistent larger mode around 100 nm which is usually the oldest, most processed background aerosol. The smaller mode was located around 20 nm, which is indicative of fresh but not necessarily local aerosol. The diurnal cycle of the aerosol number concentration showed the presence of two peaks (early morning and evening), during the transitional periods of boundary layer growth and collapse. The increase in number concentration during the peak periods was observed for the entire size distribution. Although the possible contribution of local emissions in size ranges similar to the larger mode cannot be completely ruled out, another plausible explanation is the mixing of aged elevated aerosol in the residual layer during the morning period as suggested by previous studies. Similarly, the evening time concentration peaks when the boundary layer becomes shallow concurrent with increase in local activity. A decrease in aerosol number concentration was observed during the nighttime with the development of cold (downslope) mountain winds that force the low level warmer air in the valley to rise. The mountain valley wind mechanisms induced by the topography along with the valley geometry appear to have a strong control in the diurnal cycle of the aerosol size distribution. During the sampling period, the chemical composition of PM2.5 was dominated by organic matter at both sites. Organic carbon (OC) comprised the major fraction (64–68%) of the aerosol concentration followed by ionic species (24–26%, mainly SO42− and NH4+). Elemental Carbon (EC) compromised 7–10% of the total composition and 27% of OC was found to be water soluble at both sites. The day-to-day variability observed in the time series of aerosol composition could be explained by the synoptic scale haze that extended to the sampling region from the Indian Gangetic Plain (IGP), and rainfall occurrence. In the presence of regional scale haze during dry periods, the mean volume aerosol concentration was found to increase and so did the aerosol mass concentrations.


2018 ◽  
Author(s):  
Lianet Hernández Pardo ◽  
Luiz Augusto Toledo Machado ◽  
Micael Amore Cecchini ◽  
Madeleine Sánchez Gácita

Abstract. This work uses the number concentration-effective diameter phase-space to test cloud sensitivity to variations in the aerosol population characteristics, such as the aerosol size distribution, number concentration and hygroscopicity. It is based on the information from the top of a cloud simulated by a bin-microphysics single-column model, for initial conditions typical of the Amazon. It is shown that the cloud-top evolution can be very sensitive to aerosol properties, but the relative importance of each parameter is variable. The sensitivity to each aerosol characteristic varies as a function of the tested parameter and is conditioned by the base values of the other parameters. The median radius of the aerosols showed the largest influence on this sensitivity. We show that all aerosol properties can have significant impacts on cloud microphysics, especially if the median radius of the aerosol size distribution is smaller than 0.05 μm.


2021 ◽  
Author(s):  
Shuaiqi Tang ◽  
Jerome D. Fast ◽  
Kai Zhang ◽  
Joseph C. Hardin ◽  
Adam C. Varble ◽  
...  

Abstract. An Earth System Model (ESM) aerosol-cloud diagnostics package is developed to facilitate the routine evaluation of aerosols, clouds and aerosol-cloud interactions simulated by the Department of Energy’s (DOE) Energy Exascale Earth System Model (E3SM). The first version focuses on comparing simulated aerosol properties with aircraft, ship, and surface measurements, most of them are measured in-situ. The diagnostics currently covers six field campaigns in four geographical regions: Eastern North Atlantic (ENA), Central U.S. (CUS), Northeastern Pacific (NEP) and Southern Ocean (SO). These regions produce frequent liquid or mixed-phase clouds with extensive measurements available from the Atmospheric Radiation Measurement (ARM) program and other agencies. Various types of diagnostics and metrics are performed for aerosol number, size distribution, chemical composition, CCN concentration and various meteorological quantities to assess how well E3SM represents observed aerosol properties across spatial scales. Overall, E3SM qualitatively reproduces the observed aerosol number concentration, size distribution and chemical composition reasonably well, but underestimates Aitken mode and overestimates accumulation mode aerosols over the CUS region, and underestimates aerosol number concentration over the SO region. The current version of E3SM struggles to reproduce new particle formation events frequently observed over both the CUS and ENA regions, indicating missing processes in current parameterizations. The diagnostics package is coded and organized in a way that can be easily extended to other field campaign datasets and adapted to higher-resolution model simulations. Future releases will include comprehensive cloud and aerosol-cloud interaction diagnostics.


2008 ◽  
Vol 8 (4) ◽  
pp. 15791-15824 ◽  
Author(s):  
H. Venzac ◽  
K. Sellegri ◽  
P. Villani ◽  
D. Picard ◽  
P. Laj

Abstract. Particle number concentration and size distribution are amongst the most important variables needed to constrain the role of the atmospheric particles in the Earth radiative budget. They are also linked to regulated variables such as particle mass (PM) and therefore of interest to air quality studies. However, data on their long-term variability are scarce, in particular at high altitudes where the occurrence of aerosol in elevated layers cannot be resolved from most instruments in space. Therefore it is crucial to provide ground based measurements of suited aerosol variables to obtain closure between all independent information sources. In this paper, we investigate diurnal and seasonal variability of aerosol number concentration and size distribution at the Puy de Dôme research station (France, 1465 m a.s.l.). We report variability of aerosol particle total number concentration measured over a five years (2003–2007) period and aerosol size distributions over a one year period (January to December 2006). Concentrations show a strong seasonality with maxima during summer and minima during winter. A diurnal variation is also observed with maxima between 12:00 and 18:00 UTC. At night (00:00–06:00 UTC), the median hourly total concentration varies from 600 to 800 cm−3 during winter and from 1700 to 2200 cm−3 during summer. During the day (08:00–18:00 UTC), the concentration is in the range of 700 to 1400 cm−3 during winter and from 2500 to 3500 cm−3 during summer. An averaged size distribution of particles (10–500 nm) was calculated for each season. A variability in the size of aerosols sampled at the Puy de Dôme is also observed on the seasonal and diurnal basis. Because the site lies in the free troposphere only a fraction of the time, in particular at night and during the winter season, we have subsequently analyzed the variability for free tropospheric conditions only. We show that the variability is due to both seasonal changes in air mass origin from winter to summer and enhanced concentration of the free troposphere in summer. The later observation can be explained by higher emission intensity in the boundary layer, stronger exchange between the boundary layer and the free troposphere as well as enhanced photochemical processes. Finally, aerosol mean size distributions are calculated for a given air mass type (marine/continental/regional) according to the season, for the specific conditions of the free troposphere. These results are of regional relevance and can be used to constrain chemical-transport models over Western Europe.


2018 ◽  
Vol 18 (3) ◽  
pp. 1495-1506 ◽  
Author(s):  
Hossein Dadashazar ◽  
Rachel A. Braun ◽  
Ewan Crosbie ◽  
Patrick Y. Chuang ◽  
Roy K. Woods ◽  
...  

Abstract. This study uses airborne data from two field campaigns off the California coast to characterize aerosol size distribution characteristics in the entrainment interface layer (EIL), a thin and turbulent layer above marine stratocumulus cloud tops, which separates the stratocumulus-topped boundary layer (STBL) from the free troposphere (FT). The vertical bounds of the EIL are defined in this work based on considerations of buoyancy and turbulence using thermodynamic and dynamic data. Aerosol number concentrations are examined from three different probes with varying particle diameter (Dp) ranges: > 3 nm, > 10 nm, and 0.11–3.4 µm. Relative to the EIL and FT layers, the sub-cloud (SUB) layer exhibited lower aerosol number concentrations and higher surface area concentrations. High particle number concentrations between 3 and 10 nm in the EIL are indicative of enhanced nucleation, assisted by high actinic fluxes, cool and moist air, and much lower surface area concentrations than the STBL. Slopes of number concentration versus altitude in the EIL were correlated with the particle number concentration difference between the SUB and lower FT layers. The EIL aerosol size distribution was influenced by varying degrees from STBL aerosol versus subsiding FT aerosol depending on the case examined. These results emphasize the important role of the EIL in influencing nucleation and aerosol–cloud–climate interactions.


2017 ◽  
Author(s):  
Hossein Dadashazar ◽  
Rachel A. Braun ◽  
Ewan Crosbie ◽  
Patrick Y. Chuang ◽  
Roy K. Woods ◽  
...  

Abstract. This study uses airborne data from two field campaigns off the California coast to characterize aerosol size distribution characteristics in the entrainment interface layer (EIL), a thin and turbulent layer above marine stratocumulus cloud tops, that separates the stratocumulus-topped boundary layer (STBL) from the free troposphere (FT). The vertical bounds of the EIL are defined in this work based on considerations of buoyancy and turbulence using thermodynamic and dynamic data. Aerosol number concentrations are examined from three different probes with varying particle diameter (Dp) ranges: > 3 nm, > 10 nm, 0.11–3.4 µm. Relative to the EIL and FT layers, the sub-cloud (SUB) layer exhibited lower aerosol number concentrations and higher surface area concentrations. High particle number concentrations between 3 and 10 nm in the EIL is indicative of enhanced nucleation, assisted by high actinic fluxes, cool and moist air, and much lower surface area concentrations than the STBL. Slopes of number concentration versus altitude in the EIL were correlated with the particle number concentration difference between the SUB and lower FT layers. The EIL aerosol size distribution was influenced by varying degrees from STBL aerosol versus subsiding FT aerosol depending on the case examined. These results emphasize the important role of the EIL in influencing nucleation and aerosol-cloud-climate interactions.  


2018 ◽  
Author(s):  
Anna Nikandrova ◽  
Ksenia Tabakova ◽  
Antti Manninen ◽  
Riikka Väänänen ◽  
Tuukka Petäjä ◽  
...  

Abstract. Understanding the distribution of aerosol layers is important for determining long range transport and aerosol radiative forcing. In this study we combine airborne in situ measurements of aerosol with data obtained by a ground-based High Spectral Resolution Lidar (HSRL) and radiosonde profiles to investigate the temporal and vertical variability of aerosol properties in the lower troposphere. The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) mobile facility during the BAECC (Biogenic Aerosols – Effects on Cloud and Climate) Campaign. Two flight campaigns took place in April and August 2014 with instruments measuring the aerosol size distribution from 10 nm to 10 µm at altitudes up to 3800 m. Two case studies from the flight campaigns, when several aerosol layers were identified, were selected for further investigation: one clear sky case, and one partly cloudy case. During the clear sky case, turbulent mixing ensured low temporal and spatial variability in the measured aerosol size distribution in the boundary layer whereas mixing was not as homogeneous in the boundary layer during the partly cloudy case. The elevated layers exhibited greater temporal and spatial variability in aerosol size distribution, indicating a lack of mixing. New particle formation was observed in the boundary layer during the clear sky case, and nucleation mode particles were also seen in the elevated layers that were not mixing with the boundary layer. Interpreting local measurements of elevated layers in terms of long-range transport can be achieved using back trajectories from Lagrangian models, but care should be taken in selecting appropriate arrival heights, since the modelled and observed layer heights did not always coincide. We conclude that higher confidence in attributing elevated aerosol layers with their air mass origin is attained when back trajectories are combined with lidar and radiosonde profiles.


2005 ◽  
Vol 5 (8) ◽  
pp. 2227-2252 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm) vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm


Sign in / Sign up

Export Citation Format

Share Document