scholarly journals Air–Sea Interactions from Westerly Wind Bursts During the November 2011 MJO in the Indian Ocean

2014 ◽  
Vol 95 (8) ◽  
pp. 1185-1199 ◽  
Author(s):  
James N. Moum ◽  
Simon P. de Szoeke ◽  
William D. Smyth ◽  
James B. Edson ◽  
H. Langley DeWitt ◽  
...  
2007 ◽  
Vol 135 (10) ◽  
pp. 3325-3345 ◽  
Author(s):  
Ayako Seiki ◽  
Yukari N. Takayabu

Abstract Statistical features of the relationship among westerly wind bursts (WWBs), the El Niño–Southern Oscillation (ENSO), and intraseasonal variations (ISVs) were examined using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis data (ERA-40) for the period of January 1979–August 2002. WWBs were detected over the Indian Ocean and the Pacific Ocean, but not over the Atlantic Ocean. WWB frequencies for each region were lag correlated with a sea surface temperature anomaly over the Niño-3 region. WWBs tended to occur in sequence, from the western to eastern Pacific, leading the El Niño peak by 9 months to 1 month, respectively, and after around 11 months, over the Indian Ocean. These results suggest that WWB occurrences are not random, but interactive with ENSO. Composite analysis revealed that most WWBs were associated with slowdowns of eastward-propagating convective regions like the Madden–Julian oscillation (MJO), with the intensified Rossby wave response. However, seasonal and interannual variations in MJO amplitude were not correlated with WWB frequency, while a strong MJO event tended to bear WWBs. It is suggested that the strong MJO amplitude promotes favorable conditions, but it is not the only factor influencing WWB frequency. An environment common to WWB generation in all regions was the existence of background westerlies around the WWB center near the equator. It is inferred that ENSO prepares a favorable environment for the structural transformation of an MJO, that is, the intensified Rossby wave response, that results in WWB generations. The role of the background wind fields on WWB generations will be discussed in a companion paper from the perspective of energetics.


2019 ◽  
Vol 32 (17) ◽  
pp. 5549-5565 ◽  
Author(s):  
Minmin Fu ◽  
Eli Tziperman

Abstract Westerly wind bursts (WWBs) are brief, anomalously westerly winds in the tropical Pacific that play a role in the dynamics of ENSO through their forcing of ocean Kelvin waves. They have been associated with atmospheric phenomena such as tropical cyclones, the MJO, and convectively coupled Rossby waves, yet their basic mechanism is not yet well understood. We study WWBs using an aquaplanet general circulation model, and find that eastward-propagating convective heating plays a key role in the generation of model WWBs, consistent with previous studies. Furthermore, wind-induced surface heat exchange (WISHE) acts on a short time scale of about two days to dramatically amplify the model WWB winds near the peak of the event. On the other hand, it is found that radiation feedbacks (i.e., changes in the net radiative anomalies accompanying westerly wind bursts) are not essential for the development of WWBs, and act as a weak negative feedback on WWBs and their associated convection. Similarly, sensible surface heat flux anomalies are not found to have an effect on the development of model WWBs.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 885-899 ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Zhixiong Yao ◽  
Xiaojing Li ◽  
...  

AbstractNumerous works have indicated that westerly wind bursts (WWBs) have a significant contribution to the development of El Niño events. However, the simulation of WWBs commonly suffers from large biases in the current generation of coupled general circulation models (CGCMs), limiting our ability to predict El Niño events. In this study, we introduce a WWBs parameterization scheme into the global coupled Community Earth System Model (CESM) to improve the representation of WWBs and to study the impacts of WWBs on El Niño-Southern Oscillation (ENSO) characteristics. It is found that CESM with the WWBs parameterization scheme can generate more realistic characteristics of WWBs, in particular their location and seasonal variation of occurrence. With the parameterized WWBs, the skewness of the Niño 3 index is increased, in better agreement with observation. Eastern Pacific El Niño and central Pacific El Niño events could be successfully reproduced in the model run with WWBs parameterization. Further diagnoses show that the enhanced horizontal advection in the central Pacific and vertical advection in the eastern Pacific, both of which are triggered by WWBs, are crucial factors responsible for the improvements in ENSO simulation. Clearly, WWBs have important effects on ENSO asymmetry and ENSO diversity.


2014 ◽  
Vol 41 (13) ◽  
pp. 4654-4663 ◽  
Author(s):  
Shineng Hu ◽  
Alexey V. Fedorov ◽  
Matthieu Lengaigne ◽  
Eric Guilyardi

2020 ◽  
Vol 47 (14) ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Shouwen Zhang ◽  
Ting Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document