scholarly journals Downscaling of Seasonal Precipitation for Crop Simulation

2007 ◽  
Vol 46 (6) ◽  
pp. 677-693 ◽  
Author(s):  
Andrew W. Robertson ◽  
Amor V. M. Ines ◽  
James W. Hansen

Abstract A nonhomogeneous hidden Markov model (NHMM) is used to make stochastic simulations of March–August daily rainfall at 10 stations over the southeastern United States, 1923–98. Station-averaged observed daily rainfall amount is prescribed as an input to the NHMM, which is then used to disaggregate the rainfall in space. These rainfall simulations are then used as inputs to a Crop Estimation through Resource and Environment Synthesis (CERES) crop model for maize. Regionally averaged yields derived from the NHMM rainfall simulations are found to correlate very highly (r = 0.93) with those generated by the crop model using observed rainfall; stationwise correlations range between 0.44 and 0.74. Rainfall and crop simulations are then constructed under increasing degrees of temporal smoothing applied to the regional rainfall input to the NHMM, designed to exclude the submonthly weather details that would be unpredictable in seasonal climate forecasts. Regional yields are found to be remarkably insensitive to this temporal smoothing; even with 90-day low-pass-filtered inputs to the NHMM, resulting yields are still correlated at 0.85 with the baseline simulation, whereas stationwise correlations range between 0.18 and 0.68. From these findings, it is expected that regional maize yields over the southeastern United States will be largely insensitive to year-to-year details of subseasonal rainfall variability; they should be downscalable, in principle, using an NHMM from climate forecasts archived at daily resolution, with the important caveat that the latter need to be skillful enough at the 90-day time scale. As a by-product of the analysis, subseasonal-to-interdecadal summer rainfall variability over the southeastern United States is interpretable in terms of six discrete weather states indicative of a monsoonlike climate regime. Low-simulated-yield years are found to be associated with delayed summer rainfall onset.

2013 ◽  
Vol 26 (2) ◽  
pp. 679-682 ◽  
Author(s):  
Jeremy E. Diem

Abstract In a recent article, Li et al. examined changes in the summer-season location of the western ridge of the North Atlantic subtropical high from 1948 to 2007 because there has been an increase in interannual summer rainfall variability in the southeastern United States. The following major conclusions by Li et al. are incorrect: the western ridge has undergone a significant westward trend since the late 1970s; the western ridge had increased meridional movement during 1978–2007 compared to 1948–1977; and global warming appears to be contributing to the westward expansion of the western ridge. Results presented in this paper reveal that the western ridge has been moving eastward over the past three decades, there was no change in latitudinal variance, and a westward movement of the western ridge should not be linked to global warming.


2010 ◽  
Vol 11 (4) ◽  
pp. 1007-1018 ◽  
Author(s):  
Hui Wang ◽  
Rong Fu ◽  
Arun Kumar ◽  
Wenhong Li

Abstract The variability of summer precipitation in the southeastern United States is examined in this study using 60-yr (1948–2007) rainfall data. The Southeast summer rainfalls exhibited higher interannual variability with more intense summer droughts and anomalous wetness in the recent 30 years (1978–2007) than in the prior 30 years (1948–77). Such intensification of summer rainfall variability was consistent with a decrease of light (0.1–1 mm day−1) and medium (1–10 mm day−1) rainfall events during extremely dry summers and an increase of heavy (>10 mm day−1) rainfall events in extremely wet summers. Changes in rainfall variability were also accompanied by a southward shift of the region of maximum zonal wind variability at the jet stream level in the latter period. The covariability between the Southeast summer precipitation and sea surface temperatures (SSTs) is also analyzed using the singular value decomposition (SVD) method. It is shown that the increase of Southeast summer precipitation variability is primarily associated with a higher SST variability across the equatorial Atlantic and also SST warming in the Atlantic.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 1171-1183 ◽  
Author(s):  
Wei Wei ◽  
Wenhong Li ◽  
Yi Deng ◽  
Song Yang

2013 ◽  
Vol 26 (2) ◽  
pp. 683-688 ◽  
Author(s):  
Wenhong Li ◽  
Laifang Li ◽  
Rong Fu ◽  
Yi Deng ◽  
Hui Wang

Abstract Recently Diem questioned the western ridge movement of the North Atlantic subtropical high (NASH) reported in a 2011 paper of Li et al. This reply shows more analysis that further strengthens the conclusions originally put forth by Li et al. Diem’’s analysis of the trend in the western ridge of the NASH was based on the data over a 30-yr period (1978–2007), whereas the main conclusions in Li et al. were drawn according to the data over a 60-yr period (1948–2007). Over the last 60 years, the NASH has shown a significant trend of westward movement, the meridional movement of the western ridge of the NASH has enhanced in the recent three decades, and the potential impact of global warming cannot be ruled out in an attempt to explain these changes of the NASH.


2013 ◽  
Vol 14 (4) ◽  
pp. 1334-1344 ◽  
Author(s):  
Satish Bastola ◽  
Vasubandhu Misra

Abstract This study investigates the sensitivity of the performance of hydrological models to certain temporal variations of precipitation over the southeastern United States (SEUS). Because of observational uncertainty in the estimates of rainfall variability at subdaily scales, the analysis is conducted with two independent rainfall datasets that resolve the diurnal variations. In addition, three hydrological models are used to account for model uncertainty. Results show that the temporal aggregation of subdaily rainfall can translate into a markedly higher volume error in flow simulated by the hydrological models. For the selected watersheds in the SEUS, the volume error is found to be high (~35%) for a 30-day aggregation in some of the selected watersheds. Hydrological models tend to underestimate flow in these watersheds with a decrease in temporal variability in precipitation. Furthermore, diminishing diurnal amplitude by removing subdaily rainfall corresponding to times of climatological daily maximum and minimum has a detrimental effect on the hydrological simulation. This theoretical experiment resulted in the underestimation of flow, with a disproportionate volume error (of as high as 77% in some watersheds). Observations indicate that over the SEUS variations of diurnal variability of rainfall explain a significant fraction of the seasonal variance throughout the year, with especially strong fractional variance explained in the boreal summer season. The results suggest that, should diurnal variations of precipitation get modulated either from anthropogenic or natural causes in the SEUS, there will be a significant impact on the streamflow in the watersheds. These conclusions are quite robust since both observational and model uncertainties have been considered in the analysis.


2019 ◽  
Vol 20 (7) ◽  
pp. 1275-1292 ◽  
Author(s):  
Kuk-Hyun Ahn ◽  
Scott Steinschneider

Abstract This study examines space–time patterns of summer daily rainfall variability across the Northeast United States, with a focus on historical trends and the potential for long-lead predictability. A hidden Markov model based on daily data is used to define six weather states that represent distinct patterns of rainfall across the region, and composites are used to examine atmospheric circulation during each state. The states represent the occurrence of region-wide dry and wet conditions associated with a large-scale ridge and trough over the Northeast, respectively, as well as inland and coastal storm tracks. There is a positive trend in the frequency of the weather state associated with heavy, regionwide rainfall, which is mirrored by a decreasing trend in the frequency of stationary ridges and regionwide dry conditions. The frequency of state occurrences is also examined for historical Northeast droughts. Two primary drought types emerge that are characterized by region-wide dry conditions linked to a persistent ridge and an eastward-shifted storm track associated with light precipitation along the coastline. Finally, composites of May sea surface temperature anomalies (SSTAs) prior to summers with high and low frequencies of each weather state are used to assess long-lead predictability. These composites are compared against similar composites based on regional anomalies in low streamflow conditions [June–August 7-day low flows (SDLFs)]. Results indicate that springtime SSTs, particularly those in the Caribbean Sea and tropical North Atlantic Ocean, provide some predictability for summers with above-average precipitation and SDLFs, but SSTs provide little information on the occurrence of drought conditions across the Northeast.


Sign in / Sign up

Export Citation Format

Share Document