scholarly journals Further Development of the Regional Boundary Layer Model to Study the Impacts of Greenery on the Urban Thermal Environment

2015 ◽  
Vol 54 (1) ◽  
pp. 137-152 ◽  
Author(s):  
Jianbo Yang ◽  
Hongnian Liu ◽  
Jianning Sun ◽  
Yan Zhu ◽  
Xueyuan Wang ◽  
...  

AbstractA forest canopy model is developed and coupled into the Regional Boundary Layer Model (RBLM) to fully consider the vertical structure of tree morphology. Instead of a slab surface model formerly used to represent trees in RBLM, the new version allows refinement of the radiation budgets as well as sensible and latent heat fluxes and, hence, more precise simulation of the thermal impacts of tree plantings on urban meteorological behavior. By applying this new version of RBLM, sensitivity tests are conducted to explore the potential impacts of different greenery scenarios on the thermal environment in an eastern Chinese city, Suzhou, during hot summer days. Greenings, both tree planting and grass surfacing, are beneficial in cooling the ambient air temperature. In general, tree planting is more beneficial than grass surfacing with the same coverage. In terms of surface energy balance, with tree coverage increasing from 0% to 20%, and then to 40%, the average surface net radiation fluxes at noon (1200 LST) are 591, 512, and 421 W m−2, respectively. Correspondingly, the Bowen ratio is reduced from 8.78 to 1.20 and then to 0.43 as result of the redistribution of solar energy absorbed at the ground. The cooling effect of trees is more significant at noontime and can remarkably lower the daily maximum air temperature in urban areas. The cooling effect of urban greenery increases with its coverage. Using the study results, a tree coverage of around 40% may be a feasible and optimized urban greenery scheme.

1997 ◽  
Vol 25 ◽  
pp. 393-399
Author(s):  
R.W. Lindsay ◽  
J. A. Francis ◽  
P. O. G. Persson ◽  
D. A. Roterock ◽  
A.J. Schweiger

A one-dimensional, atmospheric boundary-layer model is coupled to a thermodynamic ice model to estimate the surface turbulent fluxes over thick sea ice. The principal forcing parameters in this time-dependent model are the air temperature, humidity, and wind speed at a specified level (either at 2 m or at 850 mb) and the down-welling surface radiative fluxes, The free parameters are the air temperature, humidity, and wind-speed profiles below the specified level, the surface skin temperature and ice-temperature profile, and the surface turbulent fluxes. The goal is to determine how well we can estimate the turbulent surface heat and momentum fluxes using forcing parameters from atmospheric temperatures and radiative fluxes retrieved Irom the TlROS-N Operational Vertical Sounder TOVS) data.Meteorological observations from the Lead Experiment (LeadEx, April 1992) ice camp are used to validate turbulent fluxes computed with the surface observations, and the results are used to compare with estimates based on radiosonde observations or with estimates based on TOVS data. We and that the TOVS-based estimates of the stress are significantly more accurate than those found with a constant geostrophic drag coefficient, with a rool mean square error about half as large. This improvement is due to stratification effects included in the boundary-layer model. The errors in the sensible heat flux estimates, however, are large compared Io the small mean values observed during the field experiment.


1997 ◽  
Vol 25 ◽  
pp. 393-399 ◽  
Author(s):  
R.W. Lindsay ◽  
J. A. Francis ◽  
P. O. G. Persson ◽  
D. A. Roterock ◽  
A.J. Schweiger

A one-dimensional, atmospheric boundary-layer model is coupled to a thermodynamic ice model to estimate the surface turbulent fluxes over thick sea ice. The principal forcing parameters in this time-dependent model are the air temperature, humidity, and wind speed at a specified level (either at 2 m or at 850 mb) and the down-welling surface radiative fluxes, The free parameters are the air temperature, humidity, and wind-speed profiles below the specified level, the surface skin temperature and ice-temperature profile, and the surface turbulent fluxes. The goal is to determine how well we can estimate the turbulent surface heat and momentum fluxes using forcing parameters from atmospheric temperatures and radiative fluxes retrieved Irom the TlROS-N Operational Vertical Sounder TOVS) data.Meteorological observations from the Lead Experiment (LeadEx, April 1992) ice camp are used to validate turbulent fluxes computed with the surface observations, and the results are used to compare with estimates based on radiosonde observations or with estimates based on TOVS data. We and that the TOVS-based estimates of the stress are significantly more accurate than those found with a constant geostrophic drag coefficient, with a rool mean square error about half as large. This improvement is due to stratification effects included in the boundary-layer model. The errors in the sensible heat flux estimates, however, are large compared Io the small mean values observed during the field experiment.


1985 ◽  
Vol 90 (D6) ◽  
pp. 10631-10640 ◽  
Author(s):  
John L. Walmsley ◽  
Alan D. Howard

2021 ◽  
pp. 104048
Author(s):  
Fangfang Zhu ◽  
Nicholas Dodd ◽  
Riccardo Briganti ◽  
Magnus Larson ◽  
Jie Zhang

2013 ◽  
Vol 3 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Sahas Bikram Shah ◽  
Paavo Rasilo ◽  
Anouar Belahcen ◽  
Antero Arkkio

Abstract The cores of electrical machines are generally punched and laminated to reduce the eddy current losses. These manufacturing processes such as punching and cutting deform the electrical sheets and deteriorate its magnetic properties. Burrs are formed due to plastic deformation of electrical sheets. Burr formed due to punching on the edges of laminated sheets impairs the insulation of adjacent sheet and make random galvanic contacts during the pressing of stacked sheets. The effect of circulating current occurs if the burrs occur on the opposite edges of the stacks of laminated sheets and incase of bolted or wielded sheets, induced current return through it. This induced current causes the additional losses in electrical machine. The existence of surface current on the boundary between two insulated regions causes discontinuity of tangential component of magnetic field. Hence, based on this principle, the boundary layer model was developed to study the additional losses due to galvanic contacts formed by burred edges. The boundary layer model was then coupled with 2-D finite element vector potential formulation and compared with fine mesh layer model. Fine mesh layer model consists of finely space discretized 950028 second order triangular elements. The losses were computed from two models and were obtained similar at 50 Hz. The developed boundary layer model can be further used in electrical machines to study additional losses due to galvanic contacts at the edges of stator cores.


Sign in / Sign up

Export Citation Format

Share Document