scholarly journals Bayesian Retrievals of Vertically Resolved Cloud Particle Size Distribution Properties

2017 ◽  
Vol 56 (3) ◽  
pp. 745-765 ◽  
Author(s):  
Derek J. Posselt ◽  
James Kessler ◽  
Gerald G. Mace

AbstractRetrievals of liquid cloud properties from remote sensing observations by necessity assume sufficient information is contained in the measurements, and in the prior knowledge of the cloudy state, to uniquely determine a solution. Bayesian algorithms produce a retrieval that consists of the joint probability distribution function (PDF) of cloud properties given the measurements and prior knowledge. The Bayesian posterior PDF provides the maximum likelihood estimate, the information content in specific measurements, the effect of observation and forward model uncertainties, and quantitative error estimates. It also provides a test of whether, and in which contexts, a set of observations is able to provide a unique solution. In this work, a Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to sample the joint posterior PDF for retrieved cloud properties in shallow liquid clouds over the remote Southern Ocean. Combined active and passive observations from spaceborne W-band cloud radar and visible and near-infrared reflectance are used to retrieve the parameters of a gamma particle size distribution (PSD) for cloud droplets and drizzle. Combined active and passive measurements are able to distinguish between clouds with and without precipitation; however, unique retrieval of PSD properties requires specification of a scene-appropriate prior estimate. While much of the uncertainty in an unconstrained retrieval can be mitigated by use of information from 94-GHz passive brightness temperature measurements, simply increasing measurement accuracy does not render a unique solution. The results demonstrate the robustness of a Bayesian retrieval methodology and highlight the importance of an appropriately scene-consistent prior constraint in underdetermined remote sensing retrievals.

2021 ◽  
Author(s):  
Pak Lun Fung ◽  
Martha Arbayani Zaidan ◽  
Ola Surakhi ◽  
Sasu Tarkoma ◽  
Tuukka Petäjä ◽  
...  

Abstract. In air quality research, often only particle mass concentrations as indicators of aerosol particles are considered. However, the mass concentrations do not provide sufficient information to convey the full story of fractionated size distribution, which are able to deposit differently on respiratory system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to invert. Due to the instrumental insufficiency and inversion limitations, models for fractionated particle size distribution are of great significance to fill the missing gaps or negative values. The study at hand involves a merged particle size distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering the aerosol size distributions from 0.01 to 0.42 μm (electrical mobility equivalent size) and 0.3 μm to 10 μm (optical equivalent size) and meteorological parameters collected at an urban background region in Amman, Jordan in the period of 1st Aug 2016–31st July 2017. We develop and evaluate feed-forward neural network (FFNN) models to estimate number concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at other size bins, and (3) both of the above as input variables. Two layers with 10–15 neurons are found to be the optimal option. Lower model performance is observed at the lower edge (0.01 


2015 ◽  
Vol 54 (20) ◽  
pp. 6367 ◽  
Author(s):  
Yuanzhi Zhang ◽  
Zhaojun Huang ◽  
Chuqun Chen ◽  
Yijun He ◽  
Tingchen Jiang

2014 ◽  
Vol 119 (7) ◽  
pp. 4204-4227 ◽  
Author(s):  
J. M. E. Delanoë ◽  
A. J. Heymsfield ◽  
A. Protat ◽  
A. Bansemer ◽  
R. J. Hogan

2019 ◽  
Vol 58 (29) ◽  
pp. 8075 ◽  
Author(s):  
Qing Yan ◽  
Huige Di ◽  
Jing Zhao ◽  
Xiaonan Wen ◽  
Yufeng Wang ◽  
...  

2011 ◽  
Vol 68 (6) ◽  
pp. 1162-1177 ◽  
Author(s):  
Yang Zhao ◽  
Gerald G. Mace ◽  
Jennifer M. Comstock

Abstract Data collected in midlatitude cirrus clouds by instruments on jet aircraft typically show particle size distributions that have distinct distribution modes in both the 10–30-μm maximum dimension (D) size range and the 200–300-μm D size range or larger. A literal interpretation of the small D mode in these datasets suggests that total concentrations Nt in midlatitude cirrus are, on average, well in excess of 1 cm−3 whereas more conventional analyses of in situ data and cloud process model results suggest Nt values a factor of 10 less. Given this wide discrepancy, questions have been raised regarding the influence of data artifacts caused by the shattering of large crystals on aircraft and probe surfaces. This inconsistency and the general nature of the cirrus particle size distribution are examined using a ground-based remote sensing dataset. An algorithm using millimeter-wavelength radar Doppler moments and Raman lidar-derived extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. This algorithm is applied to case studies as well as to 313 h of cirrus measurements collected at the Atmospheric Radiation Measurement site near Lamont, Oklahoma, in 2000. It is shown that particle size distributions in cirrus can often be described as bimodal, and that this bimodality is a function of temperature and location within cirrus layers. However, the existence of Nt > 1 cm−3 in cirrus is rare (<1% of the time) and the Nt implied by the remote sensing data tends to be on the order of 100 cm−3.


Sign in / Sign up

Export Citation Format

Share Document