scholarly journals Wind-Blown Dust Modeling Using a Backward-Lagrangian Particle Dispersion Model

2017 ◽  
Vol 56 (10) ◽  
pp. 2845-2867 ◽  
Author(s):  
Derek V. Mallia ◽  
Adam Kochanski ◽  
Dien Wu ◽  
Chris Pennell ◽  
Whitney Oswald ◽  
...  

AbstractPresented here is a new dust modeling framework that uses a backward-Lagrangian particle dispersion model coupled with a dust emission model, both driven by meteorological data from the Weather Research and Forecasting (WRF) Model. This new modeling framework was tested for the spring of 2010 at multiple sites across northern Utah. Initial model results for March–April 2010 showed that the model was able to replicate the 27–28 April 2010 dust event; however, it was unable to reproduce a significant wind-blown dust event on 30 March 2010. During this event, the model significantly underestimated PM2.5 concentrations (4.7 vs 38.7 μg m−3) along the Wasatch Front. The backward-Lagrangian approach presented here allowed for the easy identification of dust source regions with misrepresented land cover and soil types, which required an update to WRF. In addition, changes were also applied to the dust emission model to better account for dust emitted from dry lake basins. These updates significantly improved dust model simulations, with the modeled PM2.5 comparing much more favorably to observations (average of 30.3 μg m−3). In addition, these updates also improved the timing of the frontal passage within WRF. The dust model was also applied in a forecasting setting, with the model able to replicate the magnitude of a large dust event, albeit with a 2-h lag. These results suggest that the dust modeling framework presented here has potential to replicate past dust events, identify source regions of dust, and be used for short-term forecasting applications.

2007 ◽  
Vol 46 (4) ◽  
pp. 403-422 ◽  
Author(s):  
Caroline Forster ◽  
Andreas Stohl ◽  
Petra Seibert

Abstract This paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and Živković-Rothman and the Lagrangian particle dispersion model “FLEXPART” based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The convection scheme relies on the ECMWF grid-scale temperature and humidity and provides a matrix necessary for the vertical convective particle displacement. The benefits of the revised interface relative to its previous version are presented. It is shown that, apart from minor fluctuations caused by the stochastic convective redistribution of the particles, the well-mixed criterion is fulfilled in simulations that include convection. Although for technical reasons the calculation of the displacement matrix differs somewhat between the forward and the backward simulations in time, the mean relative difference between the convective mass fluxes in forward and backward simulations is below 3% and can therefore be tolerated. A comparison of the convective mass fluxes and precipitation rates with those archived in the 40-yr ECMWF Reanalysis (ERA-40) data reveals that the convection scheme in FLEXPART produces upward mass fluxes and precipitation rates that are generally smaller by about 25% than those from ERA-40. This result is interpreted as positive, because precipitation is known to be overestimated by the ECMWF model. Tracer transport simulations with and without convection are compared with surface and aircraft measurements from two tracer experiments and to 222Rn measurements from two aircraft campaigns. At the surface no substantial differences between the model runs with and without convection are found, but at higher altitudes the model runs with convection produced better agreement with the measurements in most of the cases and indifferent results in the others. However, for the tracer experiments only few measurements at higher altitudes are available, and for the aircraft campaigns the 222Rn emissions are highly uncertain. Other datasets better suitable for the validation of convective transport in models are not available. Thus, there is a clear need for reliable datasets suitable to validate vertical transport in models.


2013 ◽  
Vol 21 (3) ◽  
pp. 466-473 ◽  
Author(s):  
Xingqin An ◽  
Bo Yao ◽  
Yan Li ◽  
Nan Li ◽  
Lingxi Zhou

2021 ◽  
Vol 244 ◽  
pp. 117791 ◽  
Author(s):  
Félix Gomez ◽  
Bruno Ribstein ◽  
Laurent Makké ◽  
Patrick Armand ◽  
Jacques Moussafir ◽  
...  

2014 ◽  
Vol 14 (17) ◽  
pp. 9363-9378 ◽  
Author(s):  
T. Ziehn ◽  
A. Nickless ◽  
P. J. Rayner ◽  
R. M. Law ◽  
G. Roff ◽  
...  

Abstract. This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.


2020 ◽  
Author(s):  
Mariëlle Mulder ◽  
Delia Arnold ◽  
Christian Maurer ◽  
Marcus Hirtl

<p>An operational framework is developed to provide timely and frequent source term updates for volcanic emissions (ash and SO<sub>2</sub>). The procedure includes running the Lagrangian particle dispersion model FLEXPART with an initial (a priori) source term, and combining the output with observations (from satellite, ground-based, etc. sources) to obtain an a posteriori source term. This work was part of the EUNADICS-AV (eunadics-av.eu), which is a continuation of the work developed in the VAST project (vast.nilu.no). The aim is to ensuring that at certain time intervals when new observational and meteorological data is available during an event, an updated source term is provided to analysis and forecasting groups. The system is tested with the Grimsvötn eruption of 2011. Based on a source term sensitivity test, one can find the optimum between a sufficiently detailed source term and computational resources. Because satellite and radar data from different sources is available at different times, the source term is generated with the data that is available the earliest after the eruption started and data that is available later is used for evaluation.</p>


Sign in / Sign up

Export Citation Format

Share Document