The Turbulent Structure of the Marine Atmospheric Boundary Layer During and Before a Cold Front

Author(s):  
Jian Huang ◽  
Zhongshui Zou ◽  
Qingcun Zeng ◽  
Peiliang Li ◽  
Jinbao Song ◽  
...  

AbstractThe turbulent structure within the marine atmospheric boundary layer is investigated based on four levels of observations at a fixed marine platform. During and before a cold front, the ocean surface is dominated by wind sea and swell waves, respectively, affording the opportunity to test the theory recently proposed in laboratory experiments or for flat land surfaces. The results reveal that the velocity spectra follow a k-1 law within the intermediate wavenumber (k) range immediately below inertial subrange during the cold front. A logarithmic height dependence of the horizontal velocity variances is also observed above the height of 20 m, while the vertical velocity variances increase with increasing height following a power law of 2/3. These features confirm the Attached Eddy Model and the “top-down model” of turbulence over the ocean surface. However, the behavior of velocity variances under swell conditions is much different from those during the cold front, although a remarkable k-1 law can be observed in the velocity spectra. The quadrant analysis of the momentum flux also shows a significantly different result for the two conditions.

2016 ◽  
Vol 33 (9) ◽  
pp. 2029-2052 ◽  
Author(s):  
Benjamin D. Reineman ◽  
Luc Lenain ◽  
W. Kendall Melville

AbstractThe deployment and recovery of autonomous or remotely piloted platforms from research vessels have become a way of significantly extending the capabilities and reach of the research fleet. This paper describes the use of ship-launched and ship-recovered Boeing–Insitu ScanEagle unmanned aerial vehicles (UAVs). The UAVs were instrumented to characterize the marine atmospheric boundary layer (MABL) structure and dynamics, and to measure ocean surface processes during the October 2012 Equatorial Mixing (EquatorMix) experiment in the central Pacific and during the July 2013 Trident Warrior experiment off the Virginia coast. The UAV measurements, including atmospheric momentum and radiative, sensible, and latent heat fluxes, are complemented by measurements from ship-based instrumentation, including a foremast MABL eddy-covariance system, lidar altimeters, and a digitized X-band radar system. During EquatorMix, UAV measurements reveal longitudinal atmospheric roll structures not sampled by ship measurements, which contribute significantly to vertical fluxes of heat and momentum. With the nadir-looking UAV lidar, surface signatures of internal waves are observed, consistent and coherent with measurements from ship-based X-band radar, a Hydrographic Doppler Sonar System, and a theoretical model. In the Trident Warrior experiment, the instrumented UAVs were used to demonstrate real-time data assimilation of meteorological data from UAVs into regional coupled ocean–atmosphere models. The instrumented UAVs have provided unprecedented spatiotemporal resolution in atmospheric and oceanographic measurements in remote ocean locations, demonstrating the capabilities of these platforms to extend the range and capabilities of the research fleet for oceanographic and atmospheric studies.


2008 ◽  
Vol 65 (8) ◽  
pp. 2646-2660 ◽  
Author(s):  
Kirsty E. Hanley ◽  
Stephen E. Belcher

Abstract The interaction between ocean surface waves and the overlying wind leads to a transfer of momentum across the air–sea interface. Atmospheric and oceanic models typically allow for momentum transfer to be directed only downward, from the atmosphere to the ocean. Recent observations have suggested that momentum can also be transferred upward when long wavelength waves, characteristic of remotely generated swell, propagate faster than the wind speed. The effect of upward momentum transfer on the marine atmospheric boundary layer is investigated here using idealized models that solve the momentum budget above the ocean surface. A variant of the classical Ekman model that accounts for the wave-induced stress demonstrates that, although the momentum flux due to the waves penetrates only a small fraction of the depth of the boundary layer, the wind profile is profoundly changed through its whole depth. When the upward momentum transfer from surface waves sufficiently exceeds the downward turbulent momentum flux, then the near-surface wind accelerates, resulting in a low-level wave-driven wind jet. This increases the Coriolis force in the boundary layer, and so the wind turns in the opposite direction to the classical Ekman layer. Calculations of the wave-induced stress due to a wave spectrum representative of fast-moving swell demonstrate upward momentum transfer that is dominated by contributions from waves in the vicinity of the peak in the swell spectrum. This is in contrast to wind-driven waves whose wave-induced stress is dominated by very short wavelength waves. Hence the role of swell can be characterized by the inverse wave age based on the wave phase speed corresponding to the peak in the spectrum. For a spectrum of waves, the total momentum flux is found to reverse sign and become upward, from waves to wind, when the inverse wave age drops below the range 0.15–0.2, which agrees reasonably well with previously published oceanic observations.


2018 ◽  
Vol 48 (3) ◽  
pp. 625-641 ◽  
Author(s):  
Lichuan Wu ◽  
Tihomir Hristov ◽  
Anna Rutgersson

AbstractThe wave-coherent momentum flux and velocity variances are investigated using a theoretical model and open-ocean measurements. The spectrum-integrated wave-coherent (SIWC) momentum flux and velocity variances decay roughly exponentially with height. The exponential decay coefficients of the SIWC momentum flux and velocity variances decrease with increasing peak wavenumber. The phases of the wave-coherent horizontal (vertical) velocity fluctuations are approximately 180° (90°) under waves with wind-wave angle |α1| < 90°. In general, the ratio of the SIWC momentum flux to the total momentum flux under swell conditions is higher than that under wind-wave conditions at the same height. At a height of 9.9 m, the SIWC vertical (horizontal) velocity variances can exceed 30% (10%) of the total vertical (horizontal) velocity variances at high wave ages. The impact of SIWC momentum flux on wind profiles is determined mainly by the surface SIWC momentum flux ratio, the decay coefficient of the SIWC momentum flux, and the sea surface roughness length, with the first two factors being dominant. The results of this study suggest a methodology for parameterizing the SIWC momentum flux and the total momentum flux over the ocean. These results are important for simulating the marine atmospheric boundary layer and should be used in model development.


Sign in / Sign up

Export Citation Format

Share Document