ocean surface winds
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 13 (24) ◽  
pp. 5110
Author(s):  
Lucrezia Ricciardulli ◽  
Carl Mears ◽  
Andrew Manaster ◽  
Thomas Meissner

The NASA CYGNSS satellite constellation measures ocean surface winds using the existing network of the Global Navigation Satellite System (GNSS) and was designed for measurements in tropical cyclones (TCs). Here, we focus on using a consistent methodology to validate multiple CYGNSS wind data records currently available to the public, some focusing on low to moderate wind speeds, others for high winds, a storm-centric product for TC analyses, and a wind dataset from NOAA that applies a track-wise bias correction. Our goal is to document their differences and provide guidance to users. The assessment of CYGNSS winds (2017–2020) is performed here at global scales and for all wind regimes, with particular focus on TCs, using measurements from radiometers that are specifically developed for high winds: SMAP, WindSat, and AMSR2 TC-winds. The CYGNSS high-wind products display significant biases in TCs and very large uncertainties. Similar biases and large uncertainties were found with the storm-centric wind product. On the other hand, the NOAA winds show promising skill in TCs, approaching a level suitable for tropical meteorology studies. At the global level, the NOAA winds are overall unbiased at wind regimes from 0–30 m/s and were selected for a test assimilation into a global wind analysis, CCMP, also presented here.


2021 ◽  
Vol 13 (18) ◽  
pp. 3678
Author(s):  
Lucrezia Ricciardulli ◽  
Andrew Manaster

Scatterometers provide very stable ocean vector wind data records. This is because they measure the ratio of backscattered to incident microwave signal over the ocean surface as opposed to an absolute quantity (e.g., emitted microwave signal). They provide an optimal source of observations for building a long ocean vector wind Climate Data Record (CDR). With this objective in mind, observations from different satellite platforms need to be assessed for high absolute accuracy versus a common ground truth and for fine cross-calibration during overlapping periods. Here we describe the methodology for developing a CDR of ocean surface winds from the C-band ASCAT scatterometers onboard MetOp-A, -B, and -C. This methodology is based on the following principles: a common Geophysical Model Function (GMF) and wind algorithm developed at Remote Sensing Systems (RSS) and the use of in situ and satellite winds to cross-calibrate the three scatterometers within the accuracy required for CDRs, about 0.1 m/s at the global monthly scale. Using multiple scatterometers and radiometers for comparison allows for the opportunity to isolate sensors that are drifting or experiencing step-changes as small as 0.05 m/s. We detected and corrected a couple of such changes in the ASCAT-A wind record. The ASCAT winds are now very stable over time and well cross-calibrated with each other. The full C-band wind CDR now covers 2007-present and can be easily extended in the next decade with the launch of the MetOp Second Generation scatterometers.


2020 ◽  
Vol 12 (7) ◽  
pp. 1216
Author(s):  
Xingou Xu ◽  
Xiaolong Dong ◽  
Yu Xie

Real-time (RT) ocean surface wind can make key improvements to disaster alarmingand safety of maritime navigation to avoid loss in property and human lives. Wind scatterometry is a well-acquainted way of obtaining good quality ocean surface winds, and it has been in application for decades. Existing wind-obtaining chains employ ground stations for receiving observations and can, at best, provide products in around 30 minutes for limited regions. In recent years, a satellite information-obtaining and transmission network is the new trend of Earth observation. In this research, on-board wind retrieval environment and procedures, which are different from traditional wind-obtaining chains, are proposed. First, the establishment of the on-board environment is instructed. Structures of each module are provided. The ground simulation system is been established based on this. After that, existing observing and processing routines of wind scatterometry are described, and then an on-board processing chain proposed and described. Modifications to existing satellite-ground chains are highlighted. The proposed method is validated in Level 0 data from the Chinese–French Oceanic SATellite (CFOSAT). Experiments indicate that the proposed on-board processing procedure can provide comparable results to ground-processed wind products. The root-mean-square error (RMSE) of wind speed for a track of data used in the experiment was about 0.26 m/s, and it was about 0.8° for wind direction. By decreasing wind field result quality, calculation time can be lessened in the on-board environment. However, it is found that in the whole chain of on-board wind generation, the most time-consuming procedure is observation-obtaining. The proposed on-board processing method can achieve good wind accuracy while meeting RT applications with good processing time. This provides a good complement to existing on-board-observing-ground-processing chains for RT applications.


2020 ◽  
Author(s):  
Bachir Annane ◽  
Mark Leidner ◽  
Ross Hoffman ◽  
Feixiong Huang ◽  
James Garrisson

<div> <div><em>For the analysis and forecasting of tropical cyclones, the main benefits of data from the CYGNSS constellation of satellites are the increased revisit frequency compared with polar-orbiting satellites and the ability to provide ocean surface wind observations through convective precipitation. Consequently, CYGNSS delivers an improved capability to observe the structure and evolution of ocean surface winds in and around tropical cyclones. This study quantifies the impact of assimilating CYGNSS delay-Doppler maps, CYGNSS retrieved wind speeds and derived CYGNSS wind vectors on 6-hourly analyses and 5-day forecasts of developing tropical cyclones, using the 2019 version of NOAA's operational Hurricane Weather Research and Forecasting (HWRF) model.</em></div> </div>


2020 ◽  
Author(s):  
Laurent Soudarin ◽  
Françoise Mertz ◽  
Vinca Rosmorduc ◽  
Catherine Schgounn ◽  
Thierry Guinle ◽  
...  

<p>Aviso (Archiving, Validation and Interpretation of Satellite Oceanographic data) is a service set up by CNES to process, archive and distribute data and products from altimetry satellite missions. Its portal AVISO+ (www.aviso.altimetry.fr) is the entry point to freely access more than 40 products from CNES (Centre National d'Etudes Spatiales) and CTOH (Center for Topographic studies of the Ocean and Hydrosphere) not only for ocean-oriented applications but also for hydrology, coastal, ice applications. In addition, the website proposes information (handbooks, use case, outreach material, …) to discover the products and their use. New products are regularly added to the catalogue, whether they are operational or demonstration products. For example, in 2019, the catalogue has been enriched with L2P level products from the Copernicus Sentinel-3A & 3B missions, the new version of the Mean Dynamic Topography CNES/CLS 2018, the mesoscale Eddy Trajectory Atlas in Near Real Time, several datasets of along-track and gridded SSALTO/DUACS experimental products, and some others. In 2020, some products of the CFOSAT (China-France Oceanography SATellite) mission devoted to the monitoring of ocean surface winds and waves, as well as CTOH ice and snow products will be available via Aviso+.</p><p>This presentation gives an overview of available products and services. We also present here all the recent novelties, and those to come in 2020.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 1021 ◽  
Author(s):  
Alexander Wineteer ◽  
Dragana Perkovic-Martin ◽  
Raquel Monje ◽  
Ernesto Rodríguez ◽  
Tamás Gál ◽  
...  

Ocean surface winds and currents are tightly coupled, essential climate variables, synoptic measurements of which require a remote sensing approach. Global measurements of ocean vector winds have been provided by scatterometers for decades, but a synoptic approach to measuring total vector surface currents has remained elusive. Doppler scatterometry is a coherent burst-scatterometry technique that builds on the long heritage of spinning pencil beam scatterometers to enable the wide-swath, simultaneous measurement of ocean surface vector winds and currents. To prove the measurement concept, NASA funded the DopplerScatt airborne Doppler scatterometer through the Instrument Incubator Program (IIP) and Airborne Instrument Technology Transition (AITT) program. DopplerScatt has successfully shown that pencil beam Doppler scatterometry can be used to form wide swath measurements of ocean winds and currents, and has increased the technology readiness level of key instrument components, including: Ka-band pulsed radar hardware, optimized scatterometer burst-mode operation, calibration techniques, geophysical model functions, and processing algorithms. With the promise and progress shown by DopplerScatt, and the importance of air-sea interactions in mind, the National Academy’s Decadal Survey has targeted simultaneous measurements of winds and currents from a Doppler scatterometer for an Earth Explorer class spaceborne mission. Besides DopplerScatt’s place as a technology stepping stone towards a satellite mission, DopplerScatt provides scientifically important measurements of ocean currents and winds (400 m resolution) and their derivatives (1 km resolution) over a 25 km swath. These measurements are enabling studies of the submesoscales and air-sea interactions that were previously impossible, and are central to the upcoming NASA Earth Ventures Suborbital-3 Submesoscale Ocean Dynamics Experiment (S-MODE). This paper summarizes the development of DopplerScatt hardware, systems, calibration, and operations, and how advances in each relate to progress towards a spaceborne Doppler scatterometer mission.


2019 ◽  
Vol 32 (23) ◽  
pp. 8261-8281 ◽  
Author(s):  
D. Carvalho

Abstract The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.


Sign in / Sign up

Export Citation Format

Share Document