scholarly journals A Numerical Sensitivity Study of the Influence of Siberian Snow on the Northern Annular Mode

2012 ◽  
Vol 25 (2) ◽  
pp. 592-607 ◽  
Author(s):  
Y. Peings ◽  
D. Saint-Martin ◽  
H. Douville

Abstract The climate version of the general circulation model Action de Recherche Petite Echelle Grande Echelle (ARPEGE-Climat) is used to explore the relationship between the autumn Siberian snow and the subsequent winter northern annular mode by imposing snow anomalies over Siberia. As the model presents some biases in the representation of the polar vortex, a nudging methodology is used to obtain a more realistic but still interactive extratropical stratosphere in the model. Free and nudged sensitivity experiments are compared to discuss the dependence of the results on the northern stratosphere climatology. For each experiment, a positive snow mass anomaly imposed from October to March over Siberia leads to significant impacts on the winter atmospheric circulation in the extratropics. In line with previous studies, the model response resembles the negative phase of the Arctic Oscillation. The well-documented stratospheric pathway between snow and the Arctic Oscillation operates in the nudged experiment, while a more zonal propagation of the signal is found in the free experiment. Thus, the study provides two main findings: it supports the influence of Siberian snow on the winter extratropical circulation and highlights the importance of the northern stratosphere representation in the models to capture this teleconnection. These findings could have important implications for seasonal forecasting, as most of the operational models present biases similar to those of the ARPEGE-Climat model.

2007 ◽  
Vol 20 (18) ◽  
pp. 4733-4750 ◽  
Author(s):  
Youmin Tang ◽  
Hai Lin ◽  
Jacques Derome ◽  
Michael K. Tippett

Abstract In this study, ensemble seasonal predictions of the Arctic Oscillation (AO) were conducted for 51 winters (1948–98) using a simple global atmospheric general circulation model. A means of estimating a priori the predictive skill of the AO ensemble predictions was developed based on the relative entropy (R) of information theory, which is a measure of the difference between the forecast and climatology probability density functions (PDFs). Several important issues related to the AO predictability, such as the dominant precursors of forecast skill and the degree of confidence that can be placed in an individual forecast, were addressed. It was found that R is a useful measure of the confidence that can be placed on dynamical predictions of the AO. When R is large, the prediction is likely to have a high confidence level whereas when R is small, the prediction skill is more variable. A small R is often accompanied by a relatively weak AO index. The value of R is dominated by the predicted ensemble mean. The relationship identified here, between model skills and the R of an ensemble prediction, offers a practical means of estimating the confidence level of a seasonal forecast of the AO using the dynamical model. Through an analysis of the global sea surface temperature (SST) forcing, it was found that the winter AO-related R is correlated significantly with the amplitude of the SST anomalies over the tropical central Pacific and the North Pacific during the previous October. A large value of R is usually associated with strong SST anomalies in the two regions, whereas a poor prediction with a small R indicates that SST anomalies are likely weak in these two regions and the observed AO anomaly in the specific winter is likely caused by atmospheric internal dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2009 ◽  
Vol 22 (5) ◽  
pp. 1208-1222 ◽  
Author(s):  
Christopher G. Fletcher ◽  
Steven C. Hardiman ◽  
Paul J. Kushner ◽  
Judah Cohen

Abstract Variability in the extent of fall season snow cover over the Eurasian sector has been linked in observations to a teleconnection with the winter northern annular mode pattern. Here, the dynamics of this teleconnection are investigated using a 100-member ensemble of transient integrations of the GFDL atmospheric general circulation model (AM2). The model is perturbed with a simple persisted snow anomaly over Siberia and is integrated from October through December. Strong surface cooling occurs above the anomalous Siberian snow cover, which produces a tropospheric form stress anomaly associated with the vertical propagation of wave activity. This wave activity response drives wave–mean flow interaction in the lower stratosphere and subsequent downward propagation of a negative-phase northern annular mode response back into the troposphere. A wintertime coupled stratosphere–troposphere response to fall season snow forcing is also found to occur even when the snow forcing itself does not persist into winter. Finally, the response to snow forcing is compared in versions of the same model with and without a well-resolved stratosphere. The version with the well-resolved stratosphere exhibits a faster and weaker response to snow forcing, and this difference is tied to the unrealistic representation of the unforced lower-stratospheric circulation in that model.


2005 ◽  
Vol 18 (4) ◽  
pp. 597-609 ◽  
Author(s):  
Jacques Derome ◽  
Hai Lin ◽  
Gilbert Brunet

Abstract A primitive equation dry atmospheric model is used to perform ensemble seasonal predictions. The predictions are done for 51 winter seasons [December–January–February (DJF)] from 1948 to 1998. Ensembles of 24 forecasts are produced, with initial conditions of 1 December plus small perturbations. The model uses a forcing field that is calculated empirically from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalyses. The forcing used to forecast a given winter is the sum of its winter climatological forcing plus an anomaly. The anomalous forcing is obtained as that of the month prior to the start of the forecast (November), which is also calculated from NCEP data. The predictions are thus made without using any information about the season to be predicted. The ensemble-mean predictions for the 51 winters are verified against the NCEP–NCAR reanalyses. Comparisons are made with the results obtained with a full GCM. It is found that the skill of the simple GCM is comparable in many ways to that of the full GCM. The skill in predicting the amplitude of the main patterns of Northern Hemisphere mean-seasonal variability, the Arctic Oscillation (AO) and the Pacific–North American (PNA) pattern is also discussed. The simple GCM has skill not only in predicting the PNA pattern during winters with strong ENSO forcing, but it also has skill in predicting the AO in winters without appreciable ENSO forcing.


2015 ◽  
Vol 28 (22) ◽  
pp. 8951-8967 ◽  
Author(s):  
Hae-Jeong Kim ◽  
Joong-Bae Ahn

Abstract This study verifies the impact of improved ocean initial conditions on the Arctic Oscillation (AO) forecast skill by assessing the one-month lead predictability of boreal winter AO using the Pusan National University (PNU) coupled general circulation model (CGCM). Hindcast experiments were performed on two versions of the model, one does not use assimilated ocean initial data (V1.0) and one does (V1.1), and the results were comparatively analyzed. The forecast skill of V1.1 was superior to that of V1.0 in terms of the correlation coefficient between the predicted and observed AO indices. In the regression analysis, V1.1 showed more realistic spatial similarities than V1.0 did in predicted sea surface temperature and atmospheric circulation fields. The authors suggest the relative importance of the contribution of the ocean initial condition to the AO forecast skill was because the ocean data assimilation increased the predictability of the AO, to some extent, through the improved interaction between tropical forcing induced by realistic sea surface temperature (SST) and atmospheric circulation. In V1.1, as in the observation, the cold equatorial Pacific SST anomalies generated the weakened tropical convection and Hadley circulation over the Pacific, resulting in a decelerated subtropical jet and accelerated polar front jet in the extratropics. The intensified polar front jet implies a stronger stratospheric polar vortex relevant to the positive AO phase; hence, surface manifestations of the reflected positive AO phase were then induced through the downward propagation of the stratospheric polar vortex. The results suggest that properly assimilated initial ocean conditions might contribute to improve the predictability of global oscillations, such as the AO, through large-scale tropical ocean–atmosphere interaction.


2016 ◽  
Vol 121 (22) ◽  
pp. 13,443-13,457 ◽  
Author(s):  
Hoffman H. N. Cheung ◽  
Wen Zhou ◽  
Marco Y. T. Leung ◽  
C. M. Shun ◽  
S. M. Lee ◽  
...  

2009 ◽  
Vol 22 (22) ◽  
pp. 5886-5901 ◽  
Author(s):  
Robert X. Black ◽  
Brent A. McDaniel

Abstract A principal component analysis is performed to characterize intraseasonal variability in the boreal stratospheric polar vortex. In contrast to previous studies, the current analysis examines daily zonal-mean variability within a limited spatial domain encompassing the stratospheric polar vortex. The leading EOFs are vertically coherent north–south dipoles in the zonal-mean zonal wind extending through the lower stratosphere. The first mode represents variability in polar vortex strength and is highly correlated with the stratospheric northern annular mode (SNAM). The second mode, the polar annular mode (PAM), represents variability in the latitudinal position of the polar vortex and possesses a poleward-retracted dipole anomaly structure. Composite analyses indicate that large-amplitude PAM events are relatively short lived (1–2 weeks) compared to SNAM events (1 month or longer). Trend analyses further reveal that recent decadal trends in the boreal polar vortex project more strongly onto PAM than SNAM. Composite analyses illustrate that the time evolution of sudden stratospheric warming events is dominated by SNAM, whereas SNAM and PAM play approximately equal roles in final warming events. Linear regression analyses reveal that SNAM and PAM result in circumpolar circulation and temperature anomalies of similar magnitudes within the high-latitude troposphere. It is concluded that PAM represents a previously unrecognized annular mode that strongly couples the stratosphere and troposphere on submonthly time scales at mid- to high latitudes. It is further suggested that the SNAM/PAM framework provides a means for isolating the proximate tropospheric response to respective variations in the strength and position of the stratospheric polar vortex.


2012 ◽  
Vol 25 (2) ◽  
pp. 447-458 ◽  
Author(s):  
Nan Zhao ◽  
Sujie Liang ◽  
Yihui Ding

Abstract The Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM) is attributed to wave–mean flow interaction over the extratropical region of the Northern Hemisphere. This wave–mean flow interaction is closely related to three atmospheric centers of action, corresponding to three regional oscillations: the NAO, the PNA, and the stratosphere polar vortex (SPV), respectively. It is then natural to infer that local wave–mean flow interactions at these three centers of action are dynamically coupled to each other and can thus explain the main aspects of the three-dimensional coherent structure of the annular mode, which also provides a possible way to understand how the local NAO–PNA–SPV perspective and the hemispheric AO/NAM perspective are interrelated. By using a linear stochastic model of coupled oscillators, this study suggests that two coupling modes among the PNA, NAO, and SPV are related to the two-dimensional pattern in sea level pressure of the AO. Although both of them may contribute to the AO/NAM, only one is related to the three-dimensional equivalent barotropic structure of the NAM, while the other one is mainly restricted to the troposphere. So the equivalent barotropic structure of the NAM, as usually revealed by the regression of the zonal wind against the AO index, is the manifestation of just one coupling mode. Another coupled mode is a baroclinic mode that resembles the NAM only in the troposphere. However, this similarity in spatial structures does not imply that the total variability of the AO/NAM index can be explained by those of the NAO–PNA–SPV or their coupling modes, because of the existence of the variability that may contribute to the AO/NAM, produced outside of these three regions. It is estimated that the coupling modes can jointly explain 44% of the variance of the AO/NAM index.


Sign in / Sign up

Export Citation Format

Share Document