scholarly journals Seasonal Forecasting with a Simple General Circulation Model: Predictive Skill in the AO and PNA

2005 ◽  
Vol 18 (4) ◽  
pp. 597-609 ◽  
Author(s):  
Jacques Derome ◽  
Hai Lin ◽  
Gilbert Brunet

Abstract A primitive equation dry atmospheric model is used to perform ensemble seasonal predictions. The predictions are done for 51 winter seasons [December–January–February (DJF)] from 1948 to 1998. Ensembles of 24 forecasts are produced, with initial conditions of 1 December plus small perturbations. The model uses a forcing field that is calculated empirically from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalyses. The forcing used to forecast a given winter is the sum of its winter climatological forcing plus an anomaly. The anomalous forcing is obtained as that of the month prior to the start of the forecast (November), which is also calculated from NCEP data. The predictions are thus made without using any information about the season to be predicted. The ensemble-mean predictions for the 51 winters are verified against the NCEP–NCAR reanalyses. Comparisons are made with the results obtained with a full GCM. It is found that the skill of the simple GCM is comparable in many ways to that of the full GCM. The skill in predicting the amplitude of the main patterns of Northern Hemisphere mean-seasonal variability, the Arctic Oscillation (AO) and the Pacific–North American (PNA) pattern is also discussed. The simple GCM has skill not only in predicting the PNA pattern during winters with strong ENSO forcing, but it also has skill in predicting the AO in winters without appreciable ENSO forcing.

2015 ◽  
Vol 12 (2) ◽  
pp. 2305-2348 ◽  
Author(s):  
A. Gelfan ◽  
V. A. Semenov ◽  
E. Gusev ◽  
Y. Motovilov ◽  
O. Nasonova ◽  
...  

Abstract. An approach is proposed to assess hydrological simulation uncertainty originating from internal atmospheric variability. The latter is one of three major factors contributing to the uncertainty of simulated climate change projections (along with so-called "forcing" and "climate model" uncertainties). Importantly, the role of the internal atmospheric variability is the most visible over the spatial–temporal scales of water management in large river basins. The internal atmospheric variability is represented by large ensemble simulations (45 members) with the ECHAM5 atmospheric general circulation model. The ensemble simulations are performed using identical prescribed lower boundary conditions (observed sea surface temperature, SST, and sea ice concentration, SIC, for 1979–2012) and constant external forcing parameters but different initial conditions of the atmosphere. The ensemble of the bias-corrected ECHAM5-outputs as well as ensemble averaged ECHAM5-output are used as the distributed input for ECOMAG and SWAP hydrological models. The corresponding ensembles of runoff hydrographs are calculated for two large rivers of the Arctic basin: the Lena and the Northern Dvina rivers. A number of runoff statistics including the mean and the SD of the annual, monthly and daily runoff, as well as the annual runoff trend are assessed. The uncertainties of runoff statistics caused by the internal atmospheric variability are estimated. It is found that the uncertainty of the mean and SD of the runoff has a distinguished seasonal dependence with maximum during the periods of spring-summer snowmelt and summer-autumn rainfall floods. A noticeable non-linearity of the hydrological models' response to the ensemble ECHAM5 output is found most strongly expressed for the Northern Dvine River basin. It is shown that the averaging over ensemble members effectively filters stochastic term related to internal atmospheric variability. The simulated trends are close to normally distributed around ensemble mean value that indicates that a considerable portion of the observed trend can be externally driven.


2012 ◽  
Vol 25 (2) ◽  
pp. 592-607 ◽  
Author(s):  
Y. Peings ◽  
D. Saint-Martin ◽  
H. Douville

Abstract The climate version of the general circulation model Action de Recherche Petite Echelle Grande Echelle (ARPEGE-Climat) is used to explore the relationship between the autumn Siberian snow and the subsequent winter northern annular mode by imposing snow anomalies over Siberia. As the model presents some biases in the representation of the polar vortex, a nudging methodology is used to obtain a more realistic but still interactive extratropical stratosphere in the model. Free and nudged sensitivity experiments are compared to discuss the dependence of the results on the northern stratosphere climatology. For each experiment, a positive snow mass anomaly imposed from October to March over Siberia leads to significant impacts on the winter atmospheric circulation in the extratropics. In line with previous studies, the model response resembles the negative phase of the Arctic Oscillation. The well-documented stratospheric pathway between snow and the Arctic Oscillation operates in the nudged experiment, while a more zonal propagation of the signal is found in the free experiment. Thus, the study provides two main findings: it supports the influence of Siberian snow on the winter extratropical circulation and highlights the importance of the northern stratosphere representation in the models to capture this teleconnection. These findings could have important implications for seasonal forecasting, as most of the operational models present biases similar to those of the ARPEGE-Climat model.


2007 ◽  
Vol 20 (18) ◽  
pp. 4733-4750 ◽  
Author(s):  
Youmin Tang ◽  
Hai Lin ◽  
Jacques Derome ◽  
Michael K. Tippett

Abstract In this study, ensemble seasonal predictions of the Arctic Oscillation (AO) were conducted for 51 winters (1948–98) using a simple global atmospheric general circulation model. A means of estimating a priori the predictive skill of the AO ensemble predictions was developed based on the relative entropy (R) of information theory, which is a measure of the difference between the forecast and climatology probability density functions (PDFs). Several important issues related to the AO predictability, such as the dominant precursors of forecast skill and the degree of confidence that can be placed in an individual forecast, were addressed. It was found that R is a useful measure of the confidence that can be placed on dynamical predictions of the AO. When R is large, the prediction is likely to have a high confidence level whereas when R is small, the prediction skill is more variable. A small R is often accompanied by a relatively weak AO index. The value of R is dominated by the predicted ensemble mean. The relationship identified here, between model skills and the R of an ensemble prediction, offers a practical means of estimating the confidence level of a seasonal forecast of the AO using the dynamical model. Through an analysis of the global sea surface temperature (SST) forcing, it was found that the winter AO-related R is correlated significantly with the amplitude of the SST anomalies over the tropical central Pacific and the North Pacific during the previous October. A large value of R is usually associated with strong SST anomalies in the two regions, whereas a poor prediction with a small R indicates that SST anomalies are likely weak in these two regions and the observed AO anomaly in the specific winter is likely caused by atmospheric internal dynamics.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Samuellson Lopes Cabral ◽  
José Nilson Bezerra Campos ◽  
Cleiton da Silva Silveira

ABSTRACT The planning and the efficiency of water resources are subject to the uncertainties of the input data of climate and hydrological models. Prediction of water inflow to reservoirs that would help decision making for the various water uses, contain uncertainties fundamentally the initial conditions assumed in the modeled processes. This paper evaluates the coupling of a regional atmospheric model with a hydrological model to make streamflow forecast for seasonal operation of Orós reservoir, Ceará State, Brazil. RAMS model, version 6.0, was forced by the ECHAM 4.5 atmospheric general circulation model over Alto Jaguaribe basin to obtain the rainfall data. To remove biases in the simulated precipitation fields was applied the probability density function (PDF) correction on them. Then the corrected precipitation data were inserted in the hydrologic Soil Moisture Account (SMA) model from the Hydrologic Modeling System (HEC-HMS). For SMA calibration, it was used the Nash-Sutcliffe objective function. Finally, decisions to water release from the Orós were evaluated using the Heidke Skill Score (HSS). The SMA model showed a satisfactory performance with Nash-Sutcliffe values of 0.92 (0.87) in the calibration (validation) phase, indicating that it is a rainfall runoff model alternative. For decisions in releasing water from the Orós reservoir, using climate predictions, obtained HSS = 0.43. The results show that the simulated rainfall coupled with a hydrological model is able to represent the hydrological operation of Brazilian semiarid reservoir.


2010 ◽  
Vol 10 (7) ◽  
pp. 3427-3442 ◽  
Author(s):  
M. Schneider ◽  
K. Yoshimura ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We present tropospheric H216O and HD16O/H216O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared) spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively). We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM). If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails.


2003 ◽  
Vol 3 (3) ◽  
pp. 2465-2497
Author(s):  
M. K. van Aalst ◽  
M. M. P. van den Broek ◽  
A. Bregman ◽  
C. Brühl ◽  
B. Steil ◽  
...  

Abstract. We have compared satellite and balloon observations of methane (CH4) and hydrogen fluoride (HF) during the Arctic winter 1999/2000 with results from the MA-ECHAM4 middle atmospheric general circulation model (GCM). For this purpose, the meteorology in the model was nudged towards ECMWF analyses. This nudging technique is shown to work well for this middle atmospheric model, and offers good opportunities for the simulation of realistic chemistry and transport processes. The current study focuses on transport of HF and CH4, initialized with satellite measurements from the HALOE instrument aboard the UARS satellite. We have compared the model results with HALOE data and balloon measurements throughout the winter, and analyzed the uncertainties associated with tracer initialization, boundary conditions and the passive tracer assumption. This comparison shows that the model represents the Arctic vortex well, including relatively small-scale features. However, while profiles outside the vortex match well, the model underestimates HF and overestimates CH4 concentrations inside the vortex, particularly in the middle stratosphere. This problem is also evident in a comparison of vortex descent rates based upon vortex average tracer profiles from MA-ECHAM4, and various observations, respectively. This could be due to an underestimate of diabatic subsidence in the model, or due to too much mixing between vortex and non-vortex air.


2001 ◽  
Vol 33 ◽  
pp. 521-524 ◽  
Author(s):  
John W. Weatherly ◽  
Julie M. Arblaster

AbstractA global atmosphere-ocean-sea-ice general circulation model (GCM) is used in simulations of climate with greenhouse gas concentrations and sulfate aerosols prescribed from observational data (1870−1995) and future projections (1995−2100). Simulations that include the variability in solar flux from 1870 through 1995 are also performed. The variation in solar flux of ± 2 W m−2 produces a global temperature change of ± 0.2°C in the model. The more recent simulated warming trend produced by increasing greenhouse gases exceeds this solar-flux warming, although the solar flux contributes to some of the simulated present-day warm temperatures. The future increases in greenhouse gases produce an increase in global temperature of 1.2°C over 70 years, with significant decreases in Arctic ice thickness and area. The model exhibits an atmospheric pressure mode similar to the Arctic Oscillation, with different correlation indices between the North Atlantic and North Pacific pressure anomalies.


2007 ◽  
Vol 20 (10) ◽  
pp. 2251-2272 ◽  
Author(s):  
David M. Straus ◽  
Susanna Corti ◽  
Franco Molteni

Abstract The circulation regimes in the Pacific–North American region are studied using the NCEP–NCAR reanalyses for the 18-winter period (1981/82–1998/99; NCEP18) and for the 54-winter period (1948/49–2001/02; NCEP54). The sampling properties of the regimes are estimated using very large ensembles (of size 55) of winter simulations made for the NCEP18 period with the atmospheric general circulation model of the Center for Ocean–Land–Atmosphere Studies, forced by observed SST and sea ice. The regimes are identified using a modified version of the k-means method. From the NCEP54 dataset a set of four clusters was found [i.e., the Alaskan ridge (AR), Arctic low (AL), Pacific trough (PT), and the Arctic high (AH)], which are significant (vis-à-vis a multinormal background), and more reproducible (within randomly chosen half-length samples) than would be expected from a multinormal process. The frequency of occurrence of the PT (AH) has increased (decreased) significantly during the past two decades. The PT cluster obtained from NCEP18 dataset more closely resembles the El Niño–forced seasonal mean pattern of recent decades than it does the traditional PNA. The GCM simulates the AR, AL, and PT clusters (but not the AH). The simulated AR and PT patterns have errors (cf. the NCEP18 results), which are outside the range of internal variability. The simulated frequency of occurrence agrees with the NCEP18 results within sampling variability. The differences in cluster properties of the PT and AR regimes between the NCEP18 and NCEP54 datasets are due to changes in SST forcing, not sampling error. Year-to-year changes in the frequency of occurrence of the PT, AL, and AR clusters in the simulations and the NCEP18 dataset are generally consistent with each other.


2004 ◽  
Vol 4 (1) ◽  
pp. 81-93 ◽  
Author(s):  
M. K. van Aalst ◽  
M. M. P. van den Broek ◽  
A. Bregman ◽  
C. Brühl ◽  
B. Steil ◽  
...  

Abstract. We have compared satellite and balloon observations of methane (CH4) and hydrogen fluoride (HF) during the Arctic winter 1999/2000 with results from the MA-ECHAM4 middle atmospheric general circulation model (GCM). For this purpose, the meteorology in the model was nudged towards ECMWF analyses. This nudging technique is shown to work well for this middle atmospheric model, and offers good opportunities for the simulation of chemistry and transport processes. However, caution must be used inside the polar vortex, particularly late in the winter. The current study focuses on transport of HF and CH4, initialized with satellite measurements from the HALOE instrument aboard the UARS satellite. We have compared the model results with HALOE data and balloon measurements throughout the winter, and analyzed the uncertainties associated with tracer initialization, boundary conditions and the passive tracer assumption. This comparison shows that the model represents some aspects of the Arctic vortex well, including relatively small-scale features. However, while profiles outside the vortex match observations well, the model underestimates HF and overestimates CH4 concentrations inside the vortex, particularly in the middle stratosphere. This problem is also evident in a comparison of vortex descent rates based upon vortex average tracer profiles from MA-ECHAM4, and various observations. This could be due to an underestimate of diabatic subsidence in the model, or due to too much mixing between vortex and non-vortex air.


Sign in / Sign up

Export Citation Format

Share Document