scholarly journals Submonthly Polar Vortex Variability and Stratosphere–Troposphere Coupling in the Arctic

2009 ◽  
Vol 22 (22) ◽  
pp. 5886-5901 ◽  
Author(s):  
Robert X. Black ◽  
Brent A. McDaniel

Abstract A principal component analysis is performed to characterize intraseasonal variability in the boreal stratospheric polar vortex. In contrast to previous studies, the current analysis examines daily zonal-mean variability within a limited spatial domain encompassing the stratospheric polar vortex. The leading EOFs are vertically coherent north–south dipoles in the zonal-mean zonal wind extending through the lower stratosphere. The first mode represents variability in polar vortex strength and is highly correlated with the stratospheric northern annular mode (SNAM). The second mode, the polar annular mode (PAM), represents variability in the latitudinal position of the polar vortex and possesses a poleward-retracted dipole anomaly structure. Composite analyses indicate that large-amplitude PAM events are relatively short lived (1–2 weeks) compared to SNAM events (1 month or longer). Trend analyses further reveal that recent decadal trends in the boreal polar vortex project more strongly onto PAM than SNAM. Composite analyses illustrate that the time evolution of sudden stratospheric warming events is dominated by SNAM, whereas SNAM and PAM play approximately equal roles in final warming events. Linear regression analyses reveal that SNAM and PAM result in circumpolar circulation and temperature anomalies of similar magnitudes within the high-latitude troposphere. It is concluded that PAM represents a previously unrecognized annular mode that strongly couples the stratosphere and troposphere on submonthly time scales at mid- to high latitudes. It is further suggested that the SNAM/PAM framework provides a means for isolating the proximate tropospheric response to respective variations in the strength and position of the stratospheric polar vortex.

2012 ◽  
Vol 25 (2) ◽  
pp. 592-607 ◽  
Author(s):  
Y. Peings ◽  
D. Saint-Martin ◽  
H. Douville

Abstract The climate version of the general circulation model Action de Recherche Petite Echelle Grande Echelle (ARPEGE-Climat) is used to explore the relationship between the autumn Siberian snow and the subsequent winter northern annular mode by imposing snow anomalies over Siberia. As the model presents some biases in the representation of the polar vortex, a nudging methodology is used to obtain a more realistic but still interactive extratropical stratosphere in the model. Free and nudged sensitivity experiments are compared to discuss the dependence of the results on the northern stratosphere climatology. For each experiment, a positive snow mass anomaly imposed from October to March over Siberia leads to significant impacts on the winter atmospheric circulation in the extratropics. In line with previous studies, the model response resembles the negative phase of the Arctic Oscillation. The well-documented stratospheric pathway between snow and the Arctic Oscillation operates in the nudged experiment, while a more zonal propagation of the signal is found in the free experiment. Thus, the study provides two main findings: it supports the influence of Siberian snow on the winter extratropical circulation and highlights the importance of the northern stratosphere representation in the models to capture this teleconnection. These findings could have important implications for seasonal forecasting, as most of the operational models present biases similar to those of the ARPEGE-Climat model.


2016 ◽  
Vol 73 (3) ◽  
pp. 1383-1399 ◽  
Author(s):  
Jesús Á. Barroso ◽  
Pablo Zurita-Gotor

Abstract A principal component analysis of the Northern Hemisphere extratropical zonal-mean tropopause variability at intraseasonal time scales is presented in this work. Wavy deformations of the tropopause dominate this variability and explain significantly more variance than changes in the extratropical-mean tropopause height. The first mode is well correlated with the zonal index. Analysis of the dynamical evolution of the modes shows that tropopause deformations are caused by anomalous wave breaking at the tropopause level occurring in a preexisting anomalous stratospheric polar vortex. Specifically, an intense (weak) polar vortex is associated with a rising (sinking) of the polar tropopause, while anomalous wave breaking in the midlatitudes produces a dipolar tropopause change that is consistent with the anomalous meridional eddy flux of quasigeostrophic potential vorticity. These two forcings operate on different time scales and can be separated when the data are filtered at high or low frequency. Baroclinic equilibration seems to play a small role in the extratropical internal tropopause variability and the impact of tropospheric and stratospheric dynamics is quantitatively similar. A similar analysis for the Southern Hemisphere extratropics displays the same qualitative behavior.


2019 ◽  
Vol 76 (1) ◽  
pp. 333-356 ◽  
Author(s):  
A. Hannachi ◽  
W. Iqbal

Abstract Nonlinearity in the Northern Hemisphere’s wintertime atmospheric flow is investigated from both an intermediate-complexity model of the extratropics and reanalyses. A long simulation is obtained using a three-level quasigeostrophic model on the sphere. Kernel empirical orthogonal functions (EOFs), which help delineate complex structures, are used along with the local flow tendencies. Two fixed points are obtained, which are associated with strong bimodality in two-dimensional kernel principal component (PC) space, consistent with conceptual low-order dynamics. The regimes reflect zonal and blocked flows. The analysis is then extended to ERA-40 and JRA-55 using daily sea level pressure (SLP) and geopotential heights in the stratosphere (20 hPa) and troposphere (500 hPa). In the stratosphere, trimodality is obtained, representing disturbed, displaced, and undisturbed states of the winter polar vortex. In the troposphere, the probability density functions (PDFs), for both fields, within the two-dimensional (2D) kernel EOF space are strongly bimodal. The modes correspond broadly to opposite phases of the Arctic Oscillation with a signature of the negative North Atlantic Oscillation (NAO). Over the North Atlantic–European sector, a trimodal PDF is also obtained with two strong and one weak modes. The strong modes are associated, respectively, with the north (or +NAO) and south (or −NAO) positions of the eddy-driven jet stream. The third weak mode is interpreted as a transition path between the two positions. A climate change signal is also observed in the troposphere of the winter hemisphere, resulting in an increase (a decrease) in the frequency of the polar high (low), consistent with an increase of zonal flow frequency.


2013 ◽  
Vol 26 (6) ◽  
pp. 2096-2116 ◽  
Author(s):  
Peter Hitchcock ◽  
Theodore G. Shepherd ◽  
Gloria L. Manney

Abstract A novel diagnostic tool is presented, based on polar-cap temperature anomalies, for visualizing daily variability of the Arctic stratospheric polar vortex over multiple decades. This visualization illustrates the ubiquity of extended-time-scale recoveries from stratospheric sudden warmings, termed here polar-night jet oscillation (PJO) events. These are characterized by an anomalously warm polar lower stratosphere that persists for several months. Following the initial warming, a cold anomaly forms in the middle stratosphere, as does an anomalously high stratopause, both of which descend while the lower-stratospheric anomaly persists. These events are characterized in four datasets: Microwave Limb Sounder (MLS) temperature observations; the 40-yr ECMWF Re-Analysis (ERA-40) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalyses; and an ensemble of three 150-yr simulations from the Canadian Middle Atmosphere Model. The statistics of PJO events in the model are found to agree very closely with those of the observations and reanalyses. The time scale for the recovery of the polar vortex following sudden warmings correlates strongly with the depth to which the warming initially descends. PJO events occur following roughly half of all major sudden warmings and are associated with an extended period of suppressed wave-activity fluxes entering the polar vortex. They follow vortex splits more frequently than they do vortex displacements. They are also related to weak vortex events as identified by the northern annular mode; in particular, those weak vortex events followed by a PJO event show a stronger tropospheric response. The long time scales, predominantly radiative dynamics, and tropospheric influence of PJO events suggest that they represent an important source of conditional skill in seasonal forecasting.


2008 ◽  
Vol 26 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. V. Grytsai ◽  
O. M. Evtushevsky ◽  
G. P. Milinevsky

Abstract. Anomalies in the Antarctic total ozone and amplitudes of the quasi-stationary planetary waves in the lower stratosphere temperature during the winter and spring of 1988 and 2002 have been compared. Westward displacement of the quasi-stationary wave (QSW) extremes by 50°–70° relative to the preceding years of the strong stratospheric polar vortex in 1987 and 2001, respectively, was observed. A dependence of the quasi-stationary wave ridge and trough positions on the strength of the westerly zonal wind in the lower stratosphere is shown. Comparison of the QSW amplitude in the lower stratosphere temperature in July and August shows that the amplitude distribution with latitude in August could be considered as a possible indication of the future anomalous warming in Antarctic spring. In August 2002, the QSW amplitude of 10 K at the edge region of the polar vortex (60° S–65° S) preceded the major warming in September, whereas in August 1988, the highest 7 K amplitude at 55° S preceded the large warming in the next months. These results suggest that the peak value of the lower stratosphere temperature QSW amplitude and the peak latitudinal position in late winter can influence the southern polar vortex strength in spring.


2017 ◽  
Vol 30 (12) ◽  
pp. 4463-4475 ◽  
Author(s):  
Liwei Jia ◽  
Xiaosong Yang ◽  
Gabriel Vecchi ◽  
Richard Gudgel ◽  
Thomas Delworth ◽  
...  

This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over Northern Hemisphere extratropics both in the observations and climate model predictions. A suite of numerical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of the stratosphere in seasonal predictive skill of extratropical near-surface land temperature. It is shown that most of the lead-0-month spring predictive skill of land temperature over extratropics, particularly over northern Eurasia, stems from stratospheric initialization. It is further revealed that this predictive skill of extratropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical connection between the stratosphere and troposphere is also demonstrated by the significant correlation between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the stratospheric zonal wind anomalies to the lower troposphere.


2015 ◽  
Vol 28 (22) ◽  
pp. 8951-8967 ◽  
Author(s):  
Hae-Jeong Kim ◽  
Joong-Bae Ahn

Abstract This study verifies the impact of improved ocean initial conditions on the Arctic Oscillation (AO) forecast skill by assessing the one-month lead predictability of boreal winter AO using the Pusan National University (PNU) coupled general circulation model (CGCM). Hindcast experiments were performed on two versions of the model, one does not use assimilated ocean initial data (V1.0) and one does (V1.1), and the results were comparatively analyzed. The forecast skill of V1.1 was superior to that of V1.0 in terms of the correlation coefficient between the predicted and observed AO indices. In the regression analysis, V1.1 showed more realistic spatial similarities than V1.0 did in predicted sea surface temperature and atmospheric circulation fields. The authors suggest the relative importance of the contribution of the ocean initial condition to the AO forecast skill was because the ocean data assimilation increased the predictability of the AO, to some extent, through the improved interaction between tropical forcing induced by realistic sea surface temperature (SST) and atmospheric circulation. In V1.1, as in the observation, the cold equatorial Pacific SST anomalies generated the weakened tropical convection and Hadley circulation over the Pacific, resulting in a decelerated subtropical jet and accelerated polar front jet in the extratropics. The intensified polar front jet implies a stronger stratospheric polar vortex relevant to the positive AO phase; hence, surface manifestations of the reflected positive AO phase were then induced through the downward propagation of the stratospheric polar vortex. The results suggest that properly assimilated initial ocean conditions might contribute to improve the predictability of global oscillations, such as the AO, through large-scale tropical ocean–atmosphere interaction.


2021 ◽  
Author(s):  
Sergei P. Smyshlyaev ◽  
Pavel N. Vargin ◽  
Alexander N. Lukyanov ◽  
Natalia D. Tsvetkova ◽  
Maxim A. Motsakov

Abstract. The features of dynamical processes and changes in the ozone layer in the Arctic stratosphere during the winter-spring season 2019–2020 are analyzed using ozonesondes, reanalysis data and numerical experiments with a chemistry-transport model (CTM). Using the trajectory model of the Central Aerological Observatory (TRACAO) and the ERA5 reanalysis ozone mixing ratio data, a comparative analysis of the evolution of stratospheric ozone averaged along the trajectories in the winter-spring seasons of 2010–2011, 2015–2016, and 2019–2020 was carried out, which demonstrated that the largest ozone loss at altitudes of 18–20 km within stratospheric polar vortex in the Arctic in winter-spring 2019–2020 exceeded the corresponding values of the other two winter-spring seasons 2010–2011 and 2015–2016 with the largest decrease in ozone content in recent year. The total decrease in the column ozone inside the stratospheric polar vortex, calculated using the vertical ozone profiles obtained based on the ozonesondes data, in the 2019–2020 winter-spring season was more than 150 Dobson Units, which repeated the record depletion for the 2010–2011 winter-spring season. At the same time, the maximum ozone loss in winter 2019–2020 was observed at lower levels than in 2010–2011, which is consistent with the results of trajectory analysis and the results of other authors. The results of numerical calculations with the CTM with dynamical parameters specified from the MERRA-2 reanalysis data, carried out according to several scenarios of accounting for the chemical destruction of ozone, indicated that both dynamical and chemical processes make contributions to ozone loss inside the polar vortex. In this case, dynamical processes predominate in the western hemisphere, while in the eastern hemisphere chemical processes make an almost equal contribution with dynamical factors, and the chemical depletion of ozone is determined not only by heterogeneous processes on the surface of the polar stratospheric clouds, but by the gas-phase destruction in nitrogen catalytic cycles as well.


2022 ◽  
Author(s):  
Peter Hitchcock ◽  
Amy Butler ◽  
Andrew Charlton-Perez ◽  
Chaim Garfinkel ◽  
Tim Stockdale ◽  
...  

Abstract. Major disruptions of the winter season, high-latitude, stratospheric polar vortices can result in stratospheric anomalies that persist for months. These sudden stratospheric warming events are recognized as an important potential source of forecast skill for surface climate on subseasonal to seasonal timescales. Realizing this skill in operational subseasonal forecast models remains a challenge, as models must capture both the evolution of the stratospheric polar vortices in addition to their coupling to the troposphere. The processes involved in this coupling remain a topic of open research. We present here the Stratospheric Nudging And Predictable Surface Impacts (SNAPSI) project. SNAPSI is a new model intercomparison protocol designed to study the role of the Arctic and Antarctic stratospheric polar vortices in sub-seasonal to seasonal forecast models. Based on a set of controlled, subseasonal, ensemble forecasts of three recent events, the protocol aims to address four main scientific goals. First, to quantify the impact of improved stratospheric forecasts on near-surface forecast skill. Second, to attribute specific extreme events to stratospheric variability. Third, to assess the mechanisms by which the stratosphere influences the troposphere in the forecast models, and fourth, to investigate the wave processes that lead to the stratospheric anomalies themselves. Although not a primary focus, the experiments are furthermore expected to shed light on coupling between the tropical stratosphere and troposphere. The output requested will allow for a more detailed, process-based community analysis than has been possible with existing databases of subseasonal forecasts.


2005 ◽  
Vol 5 (4) ◽  
pp. 7457-7496 ◽  
Author(s):  
A. Engel ◽  
T. Möbius ◽  
H.-P. Haase ◽  
H. Bönisch ◽  
T. Wetter ◽  
...  

Abstract. During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%.


Sign in / Sign up

Export Citation Format

Share Document