Impacts of SST Anomalies in the Agulhas Current System on the Regional Climate Variability

2012 ◽  
Vol 25 (4) ◽  
pp. 1213-1229 ◽  
Author(s):  
Mototaka Nakamura

Abstract The potential impact of the variability in the Agulhas Current system on the large-scale atmospheric state in the Southern Hemisphere is examined, using the monthly near-surface baroclinicity as the key parameter, for the period between September 1980 and August 2002. Dominant patterns of anomalous near-surface baroclinicity found from empirical orthogonal function (EOF) analyses in the region that includes most of the Agulhas Current system show a wide variety of anomaly patterns: some of which indicate spatial shifts in the position of the Agulhas Retroflection and/or Agulhas Return Current. Composited anomalies in various atmospheric fields, sea surface temperature, and the net surface heat flux at the air–sea boundary based on the signals in the EOFs suggest that sea surface temperature anomalies in the Agulhas Current system thermally force the atmosphere on the synoptic scale via modification of the near-surface baroclinicity in March and April and possibly in January and February as well.

2019 ◽  
Vol 15 (6) ◽  
pp. 1985-1998
Author(s):  
Anson Cheung ◽  
Baylor Fox-Kemper ◽  
Timothy Herbert

Abstract. Marine sediments have greatly improved our understanding of the climate system, but their interpretation often assumes that certain climate mechanisms operate consistently over all timescales of interest and that variability at one or a few sample sites is representative of an oceanographic province. In this study, we test these assumptions using modern observations in an idealized manner mimicking paleo-reconstruction to investigate whether sea surface temperature and productivity proxy records in the Southern California Current System can be used to reconstruct Ekman upwelling. The method uses extended empirical orthogonal function (EEOF) analysis of the covariation of alongshore wind stress, chlorophyll, and sea surface temperature as measured by satellites from 2002 to 2009. We find that EEOF1 does not reflect an Ekman upwelling pattern but instead much broader California Current processes. EEOF2 and 3 reflect upwelling patterns, but these patterns are timescale dependent and regional. Thus, the skill of using one site to reconstruct the large-scale dominant patterns is spatially dependent. Lastly, we show that using multiple sites and/or multiple variables generally improves field reconstruction. These results together suggest that caution is needed when attempting to extrapolate mechanisms that may be important on seasonal timescales (e.g., Ekman upwelling) to deeper time but also the advantage of having multiple proxy records.


2019 ◽  
Author(s):  
Anson Cheung ◽  
Baylor Fox-Kemper ◽  
Timothy Herbert

Abstract. Marine sediments have greatly improved our understanding of the climate system, but their interpretation often assumes that certain climate mechanisms operate consistently over all timescales of interest and that variability at one or few sample sites is representative of an oceanographic province. In this study, we test these assumptions using modern observations in an idealized manner mimicking paleo-reconstruction to investigate whether sea surface temperature and productivity proxy records in the Southern California Current System can be used to reconstruct Ekman upwelling. The method uses Extended Empirical Orthogonal Function (EEOF) analysis of covariation of alongshore windstress, chlorophyll and sea surface temperature as measured by satellites from 2002 to 2009. We find that EEOF1 does not reflect an Ekman upwelling pattern, but instead much broader California Current processes. EEOF2 and 3 reflect upwelling patterns, but these patterns are timescale dependent and are regional. Thus, the skill of using one site to reconstruct the large scale dominant patterns is spatially dependent. Lastly, we show that using multiple sites and/or multiple variables generally improve field reconstruction. These results together suggest caution is needed when attempting to extrapolate mechanisms that may be important on seasonal time scales (e.g. Ekman upwelling) to deeper time, but also the advantage of having multiple proxy records.


2017 ◽  
Vol 145 (8) ◽  
pp. 3143-3159 ◽  
Author(s):  
Masuo Nakano ◽  
Hisayuki Kubota ◽  
Tomoki Miyakawa ◽  
Tomoe Nasuno ◽  
Masaki Satoh

Super Cyclone Pam (2015) formed in the central tropical Pacific under conditions that included El Niño Modoki and the passage of a convectively enhanced phase of the Madden–Julian oscillation (MJO) in the western Pacific. This study examines the influence that sea surface temperature anomalies (SSTAs) have on the MJO and low-frequency large-scale circulation, and establishes how they modulated the genesis of Pam. Two series of numerical experiments were conducted by using a nonhydrostatic global atmospheric model with observed (OBSSST) and climatological (CLMSST) SSTs. The results suggested that low-frequency westerly winds at 850 hPa (U850) were intensified in the central tropical Pacific due to the observed SSTA. The amplitude of the MJO simulated in OBSSST was larger than in CLMSST. In addition, the experiments initialized 26 February–2 March exhibited that the phase of the MJO in OBSSST was ahead of that in CLMSST, and that the genesis location in OBSSST was ~10° to the east of that in CLMSST. An analysis of large-scale fields indicated that a positive U850 maintained by SSTAs and intensification of U850 by the MJO modified distribution of large-scale cyclonic vorticity and precipitable water. These changes in large-scale fields modified the location and timing of intensification of the disturbance that become Pam and resulted in Pam’s genesis location being 10° farther east with slight impact on its genesis probability. Additional experiments showed that SSTAs in the central tropical Pacific were the dominant cause of modifications to large-scale fields, the MJO, and Pam’s genesis location.


Sign in / Sign up

Export Citation Format

Share Document