scholarly journals Extratropical Forcing of Tropical Atlantic Variability during Boreal Summer and Fall

2012 ◽  
Vol 25 (6) ◽  
pp. 2056-2076 ◽  
Author(s):  
Dimitry Smirnov ◽  
Daniel J. Vimont

Abstract The connection between midlatitude Atlantic sea surface temperature (SST) anomalies and tropical SST variations during boreal summer and fall are investigated using a coupled general circulation model (GCM). This research follows on an observational study that finds that, using linear inverse modeling (LIM), predictions of boreal summer tropical Atlantic Meridional Mode (AMM) variations can be made with skill exceeding persistence with lead times of about one year. The LIM framework identified extratropical Atlantic SST anomalies as important precursors to the AMM variations. The authors have corroborated this finding using a general circulation model coupled to a slab ocean, which represents a completely different physical basis from the LIM. Initializing the GCM with the LIM-derived “optimal” SST anomaly in November results in a steady equatorward propagation of SST anomalies into the subtropics during the following boreal spring. Thereafter, the GCM suggests that two possible feedbacks propagate the SST anomalies farther equatorward and westward with minimal loss of amplitude: the dominant wind–evaporation–SST (WES) thermodynamic feedback and a secondary low-cloud–SST radiative feedback. This study shows that this result has strong seasonal dependence and consists of nonlinear interactions when considering warm and cold “optimal” conditions separately. One main finding is that oceanic dynamics are not essential to understanding extratropical–tropical interaction in the Atlantic basin. The authors also discuss the results of the study in context with previous studies investigating the extratropical forcing of tropical air–sea variability.

2004 ◽  
Vol 17 (21) ◽  
pp. 4109-4134 ◽  
Author(s):  
Y. Zheng ◽  
D. E. Waliser ◽  
W. F. Stern ◽  
C. Jones

Abstract This study compares the tropical intraseasonal oscillation (TISO) variability in the Geophysical Fluid Dynamics Laboratory (GFDL) coupled general circulation model (CGCM) and the stand-alone atmospheric general circulation model (AGCM). For the AGCM simulation, the sea surface temperatures (SSTs) were specified using those from the CGCM simulation. This was done so that any differences in the TISO that emerged from the two simulations could be attributed to the coupling process and not to a difference in the mean background state. The comparison focused on analysis of the rainfall, 200-mb velocity potential, and 850-mb zonal wind data from the two simulations, for both summer and winter periods, and included comparisons to analogous diagnostics using NCEP–NCAR reanalysis and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) rainfall data. The results of the analysis showed three principal differences in the TISO variability between the coupled and uncoupled simulations. The first was that the CGCM showed an improvement in the spatial variability associated with the TISO mode, particularly for boreal summer. Specifically, the AGCM exhibited almost no TISO variability in the Indian Ocean during boreal summer—a common shortcoming among AGCMs. The CGCM, on the other hand, did show a considerable enhancement in TISO variability in this region for this season. The second was that the wavenumber–frequency spectra of the AGCM exhibited an unrealistic peak in variability at low wavenumbers (1–3, depending on the variable) and about 3 cycles yr−1 (cpy). This unrealistic peak of variability was absent in the CGCM, which otherwise tended to show good agreement with the observations. The third difference was that the AGCM showed a less realistic phase lag between the TISO-related convection and SST anomalies. In particular, the CGCM exhibited a near-quadrature relation between precipitation and SST anomalies, which is consistent with observations, while the phase lag was reduced in the AGCM by about 1.5 pentads (∼1 week). The implications of the above results, including those for the notions of “perfect SST” and “two tier” experiments, are discussed, as are the caveats associated with the study's modeling framework and analysis.


2009 ◽  
Vol 10 (2) ◽  
pp. 353-373 ◽  
Author(s):  
Vasubandhu Misra ◽  
P. A. Dirmeyer

Abstract Multidecadal simulations over the continental United States by an atmospheric general circulation model coupled to an ocean general circulation model is compared with that forced by observed sea surface temperature (SST). The differences in the mean and the variability of precipitation are found to be larger in the boreal summer than in the winter. This is because the mean SST differences in the two simulations are qualitatively comparable between the two seasons. The analysis shows that, in the boreal summer season, differences in moisture flux convergence resulting from changes in the circulation between the two simulations initiate and sustain changes in precipitation between them. This difference in precipitation is, however, further augmented by the contributions from land surface evaporation, resulting in larger differences of precipitation between the two simulations. However, in the boreal winter season, despite differences in the moisture flux convergence between the two model integrations, the precipitation differences over the continental United States are insignificant. It is also shown that land–atmosphere feedback is comparatively much weaker in the boreal winter season.


2006 ◽  
Vol 19 (3) ◽  
pp. 366-391 ◽  
Author(s):  
K. Rajendran ◽  
A. Kitoh

Abstract The impact of ocean–atmosphere coupling on the structure and propagation characteristics of 30–60-day tropical intraseasonal oscillations (TISOs) is investigated by analyzing long-term simulations of the Meteorological Research Institute coupled general circulation model (CGCM) and its stand-alone atmospheric general circulation model (AGCM) version forced with SSTs derived from the CGCM and comparing them with recent observation datasets [Global Precipitation Climatology Project (GPCP) precipitation, 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and Reynolds SST]. Composite events of (i) eastward propagating Madden–Julian oscillations (MJOs) during boreal winter and (ii) northward propagating intraseasonal oscillations (NPISOs) during boreal summer, constructed based on objective criteria, show that the three-dimensional structure, amplitude, and speed of propagation, and the phase relationship among surface fluxes, SST, and convection, are markedly improved in the CGCM simulation. Consistent with the frictional wave conditional instability of the second kind mechanism, successive development of low-level convergence to the east (north) of deep convection was found to be important for eastward (northward) propagation of MJO (NPISO). Complex interaction between large-scale dynamics and convection reveals the importance of atmospheric dynamics and suggests that they are intrinsic modes in the atmosphere where coupling is not essential for their existence. However, as in observations, realistic coupling in the CGCM is found to result in the evolution of TISOs as coupled modes through a coherent coupled feedback process. This acts as an amplifying mechanism for the existing propagating convective anomalies and plays an important modifying role toward a more realistic simulation of TISOs. In contrast, the simulated TISOs in its atmosphere-alone component lack many of the important features associated with their amplitude, phase, and life cycle. Thus, a realistic representation of the interaction between sea surface and the atmospheric boundary layer is crucial for a better simulation of TISOs.


2011 ◽  
Vol 24 (7) ◽  
pp. 1931-1949 ◽  
Author(s):  
Ousmane Ndiaye ◽  
M. Neil Ward ◽  
Wassila M. Thiaw

Abstract The ability of several atmosphere-only and coupled ocean–atmosphere general circulation models (AGCMs and CGCMs, respectively) is explored for the prediction of seasonal July–September (JAS) Sahel rainfall. The AGCMs driven with observed sea surface temperature (SST) over the period 1968–2001 confirm the poor ability of such models to represent interannual Sahel rainfall variability. However, using a model output statistics (MOS) approach with the predicted low-level wind field over the tropical Atlantic and western part of West Africa yields good Sahel rainfall skill for all models. Skill is mostly captured in the leading empirical orthogonal function (EOF1), representing large-scale fluctuation in the regional circulation system over the tropical Atlantic. This finding has operational significance for the utility of AGCMs for short lead-time prediction based on persistence of June SST information; however, studies have shown that for longer lead-time forecasts, there is substantial loss of skill, relative to that achieved using the observed JAS SST. The potential of CGCMs is therefore explored for extending the lead time of Sahel rainfall predictions. Some of the models studied, when initialized using April information, show potential to at least match the levels of skill achievable from assuming persistence of April SST. One model [NCEP Climate Forecasting System (CFS)] was found to be particularly promising. Diagnosis of the hindcasts available for the CFS (from lead times up to six months for 1981–2008) suggests that, especially by applying the same MOS approach, skill is achieved through capturing interannual variations in Sahel rainfall (primarily related to El Niño–Southern Oscillation in the period of study), as well as the upward trend in Sahel rainfall that is observed over 1981–2008, which has been accompanied by a relative warming in the North Atlantic compared to the South Atlantic. At lead times up to six months (initialized forecasts in December), skill levels are maintained with the correlation between predicted and observed Sahel rainfall at approximately r = 0.6. While such skill levels at these long lead times are notably higher than previously achieved, further experiments, such as over the same period and with comparable AGCMs, are required for definitive attribution of the advance to the use of a coupled ocean–atmosphere modeling approach. Nonetheless, the detrended skill achieved here by the January–March initializations (r = 0.33) must require an approach that captures the evolution of the key ocean–atmosphere anomalies from boreal winter to boreal summer, and approaches that draw on persistence in ocean conditions have not previously been successful.


Sign in / Sign up

Export Citation Format

Share Document