Contributions of Downstream Eddy Development to the Teleconnection between ENSO and the Atmospheric Circulation over the North Atlantic

2012 ◽  
Vol 25 (14) ◽  
pp. 4993-5010 ◽  
Author(s):  
Ying Li ◽  
Ngar-Cheung Lau

Abstract The spatiotemporal evolution of various meteorological phenomena associated with El Niño–Southern Oscillation (ENSO) in the North Pacific–North American–North Atlantic sector is examined using both NCEP–NCAR reanalyses and output from a 2000-yr integration of a global coupled climate model. Particular attention is devoted to the implications of downstream eddy developments on the relationship between ENSO and the atmospheric circulation over the North Atlantic. The El Niño–related persistent events are characterized by a strengthened Pacific subtropical jet stream and an equatorward-shifted storm track over the North Pacific. The wave packets that populate the storm tracks travel eastward through downstream development. The barotropic forcing of the embedded synoptic-scale eddies is conducive to the formation of a flow that resembles the negative phase of the North Atlantic Oscillation (NAO). The more frequent and higher persistence of those episodes during El Niño winters contribute to the prevalence of negative NAO conditions. The above processes are further delineated by conducting a case study for the 2009/10 winter season, in which both El Niño and negative NAO conditions prevailed. It is illustrated that the frequent and intense surface cyclone development over North America and the western Atlantic throughout that winter are associated with upper-level troughs propagating across North America, which in turn are linked to downstream evolution of wave packets originating from the Pacific storm track.

2016 ◽  
Vol 29 (4) ◽  
pp. 1353-1368 ◽  
Author(s):  
Felicitas Hansen ◽  
Katja Matthes ◽  
Sebastian Wahl

Abstract This study investigates the interaction of the quasi-biennial oscillation (QBO) and the El Niño–Southern Oscillation (ENSO) in the troposphere separately for the North Pacific and North Atlantic region. Three 145-yr model simulations with NCAR’s Community Earth System Model Whole Atmosphere Community Climate Model (CESM-WACCM) are analyzed where only natural (no anthropogenic) forcings are considered. These long simulations allow the authors to obtain statistically reliable results from an exceptional large number of cases for each combination of the QBO (westerly and easterly) and ENSO phases (El Niño and La Niña). Two different analysis methods were applied to investigate where nonlinearity might play a role in QBO–ENSO interactions. The analyses reveal that the stratospheric equatorial QBO anomalies extend down to the troposphere over the North Pacific during Northern Hemisphere winter only during La Niña and not during El Niño events. The Aleutian low is deepened during QBO westerly (QBOW) as compared to QBO easterly (QBOE) conditions, and the North Pacific subtropical jet is shifted northward during La Niña. In the North Atlantic, the interaction of QBOW with La Niña conditions (QBOE with El Niño) results in a positive (negative) North Atlantic Oscillation (NAO) pattern. For both regions, nonlinear interactions between the QBO and ENSO might play a role. The results provide the potential to enhance the skill of tropospheric seasonal predictions in the North Atlantic and North Pacific region.


2017 ◽  
Vol 30 (10) ◽  
pp. 3705-3724 ◽  
Author(s):  
Jiabao Wang ◽  
Hye-Mi Kim ◽  
Edmund K. M. Chang

Abstract An interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Niña–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Niño–Southern Oscillation. The near-future projections of Ts and storm tracks are characterized by a warmer planet under the influence of increasing greenhouse gases and a significant weakening of both the NAST and the NPST. The potential role of the NAST in redistributing changes in Ts over the surrounding regions is also examined. The anomalous equatorward moisture flux associated with the weakening trend of the NAST would enhance the warming over its upstream region and hinder the warming over its downstream region via modulation of the downward infrared radiation.


2020 ◽  
Vol 33 (12) ◽  
pp. 5223-5237 ◽  
Author(s):  
Ronald K. K. Li ◽  
Tim Woollings ◽  
Christopher O’Reilly ◽  
Adam A. Scaife

AbstractIn a free-running climate model, DJF tropical–extratropical teleconnections are assessed and compared to observed teleconnections in reanalysis data. From reanalysis, the leading mode of covariability between tropical outgoing longwave radiation (OLR) and Northern Hemisphere extratropical geopotential height (Z500) is identified using maximum covariance analysis (MCA). This mode relates closely to the El Niño pattern. The GCM captures the tropical OLR well but the associated extratropical Z500 less well. The GCM climatology has an equatorward shifted North Pacific jet bias. We examine whether the difference in the teleconnection pattern is related to the GCM’s jet bias. In both a ray-tracing analysis and a barotropic model, this jet bias is shown to affect the Rossby wave propagation from the tropical Pacific into the North Pacific. These idealized model results suggest qualitatively that the MCA difference is largely consistent with linear Rossby wave dynamics. While the basic state has a larger effect on the North Pacific MCA, a Rossby wave source (RWS) bias in the Caribbean has a larger effect on the North Atlantic MCA. The North Pacific jet bias is also proposed to affect the downstream propagation of waves from North America into the Caribbean, where it affects tropical RWS and the triggering of secondary waves into the North Atlantic. We propose that climatological biases in the tropics are one underlying cause of the jet bias. Our study may also help understand the results of other climate models with similar jet biases.


2007 ◽  
Vol 20 (22) ◽  
pp. 5642-5665 ◽  
Author(s):  
Hai Lin ◽  
Jacques Derome ◽  
Gilbert Brunet

Abstract Ensemble integrations using a primitive-equation dry atmospheric model were performed to investigate the atmospheric transient response to tropical thermal forcings that resemble El Niño and La Niña. The response develops in the North Pacific within 1 week after the integration. The signal in the North Atlantic and Europe is established by the end of the second week. Significant asymmetry was found between the responses in El Niño and La Niña that is similar to the observations, that is, one feature is that the 550-hPa positive height response in the North Pacific of the La Niña run is located about 30° west of the negative response of the El Niño run; another feature is that the responses in the North Atlantic and Europe for the La Niña and El Niño cases have similar patterns with the same polarity. The first feature is established within 2 weeks of the integration, while the second feature develops starting from the end of the second week. Several factors contribute to this nonlinearity of the response. In the Tropics, the shape of the Rossby wave response and the zonal extent of the Kelvin wave are not symmetric between El Niño and La Niña, which seems to be associated with the dependence of the wave property on the modified zonal mean flow. This is especially important in the equatorial region to the west of the forcing, which is likely responsible for the phase shift of the major extratropical response in the North Pacific. The transient eddy activity in the extratropics feeds back to the response and helps to maintain the nonlinearity.


2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


2018 ◽  
Vol 19 (2) ◽  
pp. 409-426 ◽  
Author(s):  
Michael J. DeFlorio ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
David A. Lavers ◽  
F. Martin Ralph ◽  
...  

Abstract Atmospheric rivers (ARs) are global phenomena that transport water vapor horizontally and are associated with hydrological extremes. In this study, the Atmospheric River Skill (ATRISK) algorithm is introduced, which quantifies AR prediction skill in an object-based framework using Subseasonal to Seasonal (S2S) Project global hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The dependence of AR forecast skill is globally characterized by season, lead time, and distance between observed and forecasted ARs. Mean values of daily AR prediction skill saturate around 7–10 days, and seasonal variations are highest over the Northern Hemispheric ocean basins, where AR prediction skill increases by 15%–20% at a 7-day lead during boreal winter relative to boreal summer. AR hit and false alarm rates are explicitly considered using relative operating characteristic (ROC) curves. This analysis reveals that AR forecast utility increases at 10-day lead over the North Pacific/western U.S. region during positive El Niño–Southern Oscillation (ENSO) conditions and at 7- and 10-day leads over the North Atlantic/U.K. region during negative Arctic Oscillation (AO) conditions and decreases at a 10-day lead over the North Pacific/western U.S. region during negative Pacific–North America (PNA) teleconnection conditions. Exceptionally large increases in AR forecast utility are found over the North Pacific/western United States at a 10-day lead during El Niño + positive PNA conditions and over the North Atlantic/United Kingdom at a 7-day lead during La Niña + negative PNA conditions. These results represent the first global assessment of AR prediction skill and highlight climate variability conditions that modulate regional AR forecast skill.


2009 ◽  
Vol 39 (1) ◽  
pp. 234-247 ◽  
Author(s):  
Arnaud Czaja

Abstract In an attempt to elucidate the role of atmospheric and oceanic processes in setting a vigorous ocean overturning circulation in the North Atlantic but not in the North Pacific, a comparison of the observed atmospheric circulation and net surface freshwater fluxes over the North Atlantic and Pacific basins is conducted. It is proposed that the more erratic meridional displacements of the atmospheric jet stream over the North Atlantic sector is instrumental in maintaining high surface salinities in its subpolar gyre. In addition, it is suggested that the spatial pattern of the net freshwater flux at the sea surface favors higher subpolar Atlantic salinity, because the geographical line separating net precipitation from net evaporation is found well south of the time-mean gyre separation in the North Pacific, whereas the two lines tend to coincide in the North Atlantic. Numerical experiments with an idealized two-gyre system confirm that these differences impact the salinity budget of the subpolar gyre. Further analysis of a coupled climate model in which the Atlantic meridional overturning cell has been artificially weakened suggests that the more erratic jet fluctuations in the Atlantic and the shift of the zero [net evaporation minus precipitation (E − P)] line are likely explained by features independent of the state of the thermohaline circulation. It is thus proposed that the atmospheric circulation helps “locking” high surface salinities and an active coupling between upper and deep ocean layers in the North Atlantic rather than in the North Pacific basin.


2020 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Lixin Wu

<p>Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO<sup>+</sup>), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO<sup>-</sup> that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO<sup>+</sup>.The PB events concurring with NAO<sup>-</sup> (NAO<sup>+</sup>) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO<sup>-</sup> events and producing the WWCE SAT dipole component related to the PB-NAO<sup>+</sup> events because the PB and NAO<sup>+</sup> form a more zonal wave train in this case.</p>


Sign in / Sign up

Export Citation Format

Share Document