arctic amplification
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 74)

H-INDEX

27
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Yuzhen Yan ◽  
Xinyu Wen

Abstract Arctic amplification (AA), a phenomenon that a larger change in temperature near the Arctic areas than the Northern Hemisphere average in the past 100+ years, has significant impacts on mid-latitude weather and climate, and therefore is of great concern in current climate projections. Previous studies suggest a wide range of AA factors from 1.0 to 12.5 using either the 20th century observations or climate model hindcasts. In the present paper, we explore the diversity of AA factor in a long-term transient simulation covering the past glacial-to-interglacial years. It is shown that the natural AA phenomenon is essentially linked with North Atlantic sea ice changes through ice-albedo feedback with a narrowed and robust AA factor of 2.5±0.8 throughout the last 21,000 years. Current observed AA phenomenon is a mixed result combining sea ice melting induced AA mode with GHGs induced global uniform warming, and thus has an AA factor slightly less than 2.5. In the future, as Arctic sea ice gradually melts off, we speculate that AA phenomenon might fade off accordingly and the AA factor will decline close to 1.0 in 1-2 centuries. Our findings provide new evidence for better understanding the range of AA factor and associated key physical processes, and provide new insights for AA’s projection in current anthropogenic warming climate.


Author(s):  
Yu-Chiao Liang ◽  
Lorenzo M. Polvani ◽  
Michael Previdi ◽  
Karen Louise Smith ◽  
Mark R. England ◽  
...  

Abstract Arctic amplification (AA) - the greater warming of the Arctic near-surface temperature relative to its global mean value - is a prominent feature of the climate response to increasing greenhouse gases. Recent work has revealed the importance of ozone-depleting substances (ODS) in contributing to Arctic warming and sea-ice loss. Here, using ensembles of climate model integrations, we expand on that work and directly contrast Arctic warming from ODS to that from carbon dioxide (CO$_2$), over the 1955-2005 period when ODS loading peaked. We find that the Arctic warming and sea-ice loss from ODS are slightly more than half (52-59\%) those from CO$_2$. We further show that the strength of AA for ODS is 1.44 times larger than that for CO$_2$, and that this mainly stems from more positive Planck, albedo, lapse-rate, and cloud feedbacks. Our results suggest that AA would be considerably stronger than presently observed had the Montreal Protocol not been signed.


2022 ◽  
Author(s):  
Dariusz Sebastian Ignatiuk ◽  
Małgorzata Błaszczyk ◽  
Tomasz Budzik ◽  
Mariusz Grabiec ◽  
Jacek Adam Jania ◽  
...  

Abstract. The warming of the Arctic climate is well documented, but the mechanisms of Arctic amplification are still not fully understood. Thus, monitoring of glaciological and meteorological variables and the environmental response to accelerated climate warming must be continued and developed in Svalbard. Long-term meteorological observations carried out in situ on glaciers in conjunction with glaciological monitoring are rare in the Arctic and significantly expand our knowledge about processes in the polar environment. This study presents the unique glaciological and meteorological data collected in 2009–2020 in southern Spitsbergen (Werenskioldbreen). The meteorological data are comprised of air temperature, relative humidity, wind speed and direction, shortwave and longwave upwelling and downwelling radiation on 10 minutes, hourly and daily timescale (2009–2020). The snow dataset includes 49 sampling points from 2009–2019 with the snow depth, snow bulk density and SWE data. The glaciological data consist of point and surface annual winter, summer and net balance for 2009–2020. The paper also includes modelling of the daily glacier surface ablation (2009–2020) based on the presented data. The high-quality and long-term datasets are expected to serve as accurate forcing data in hydrological and glaciological models and validation of remote sensing products. The datasets are available from the and Polish Polar Database (https://ppdb.us.edu.pl/) and Zenodo (https://doi.org/10.5281/zenodo.5791748, Ignatiuk, 2021a; https://doi.org/10.5281/zenodo.5792168, Ignatiuk, 2021b).


2021 ◽  
Author(s):  
Theresa Kiszler ◽  
Giovanni Chellini ◽  
Kerstin Ebell ◽  
Stefan Kneifel ◽  
Vera Schemann

<p>The discussions around Arctic Amplification have led to extensive research, as done in the transregional collaboration (AC)³. One focus are the feedback mechanisms that are strengthening or weakening the warming. Several of these feedbacks involve moisture in the atmosphere in all phases. To understand these better we have been running and analysing daily cloud-resolving simulations. We performed these simulations for a region more strongly affected by the warming around Ny-Ålesund (Svalbard), which is challenging due to its diverse surface properties and mountainous surrounding. We have created an outstandingly large data set of several months of these simulations with 600 m resolution, using the Icosahedral non-hydrostatic model in the large-eddy mode (ICON-LEM).</p> <p>To gain some understanding of how well the model can represent such a complex location, we evaluated the performance of the model. For this, we used a range of observations from the measurement super-site located at Ny-Ålesund. This included radiosondes [1], a rain gauge, a microwave radiometer and further processed remote sensing data. Combining the measurements and simulations enables us to provide thorough statistics for different variables connected to clouds and to establish an understanding of how well they are represented.</p> <p>We show that the model is capable of simulating the two distinct flow regimes in the boundary layer and the free troposphere. Further, we found a tendency in the model to misrepresent liquid and mixed-phase clouds as purely ice clouds. Though the water vapour is well captured, we found further steps in the chain towards precipitation formation are insufficiently represented. Through the use of forward simulations and expanded model output, we can continue to get a better picture of possibilities to understand and improve the microphysical processes.</p> <p><em>This work was supported by the</em><em> DFG funded Transregio-project TR 172 “Arctic Amplification </em>(AC)3<em>“.</em></p> <p><strong>References</strong></p> <p>[1] M. Maturilli, High resolution radiosonde measurements from station Ny-Ålesund (2017-04 et seq). <em>Alfred</em> <em>Wegener Institute - Research Unit Potsdam, PANGAEA</em>, https://doi.org/10.1594/PANGAEA.914973 (2020)</p>


2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Annette Rinke ◽  
Hélène Bresson

<p>Understanding the variability of energy transport and its components, and the mechanisms involved, is critical to improve our understanding of the Arctic amplification. Large amounts of energy are transported from the equator to the poles by the large-scale atmospheric circulation. At the Arctic Circle, this represents an annual average net transport of about two PW. The energy transport can be divided into latent and dry static components which, when increasing, indirectly contribute to the Arctic amplification. While the enhanced dry static energy transport favors sea ice melt and changes the lapse rate, the enhanced influx of latent energy affects the water vapor content and cloud formation, and thus also the lapse rate and sea ice melt via radiative effects.</p> <p>In this study, 40 years (1979-2018) of 6-hourly ERA-Interim reanalysis data are used to calculate the energy transport and its components. Inconsistencies due to spurious mass-flux are accounted for by barotropic wind field correction before the calculation. The first and last decade of the ERA-Interim period differ in terms of sea ice cover, sea surface temperature, and greenhouse gas concentrations, all of which affect the atmospheric circulation.</p> <p>The comparison between these periods shows significant changes in monthly and annual vertically integrated energy transport across the Arctic Circle. On an annual average, energy transport significantly increases in the late period for both total energy and its components, whereas the transport of dry static energy decreases in the winter season. The analysis of the atmospheric circulation reveals variations in the frequency of occurrence of preferred circulation regimes and the associated anomalies in energy transport as a potential cause for the observed changes.</p> <p>The hemispheric-scale and climatological view provides an expanded overall picture in terms of poleward energy transport to atmospheric events as cold air outbreaks and atmospheric rivers. This is demonstrated using the example of the atmospheric river which occurred over Svalbard on 6<sup>th</sup> & 7<sup>th</sup> June 2017.</p>


2021 ◽  
Author(s):  
Sina Mehrdad ◽  
Khalil Karami ◽  
Dörthe Handorf ◽  
Johannes Quaas ◽  
Ines Höschel ◽  
...  

<p>The global warming has been observed to be more severe in the Arctic compared to the rest of the world. This enhanced warming i.e. Arctic Amplification is not just the result of local feedback processes in the Arctic. The stratospheric pathways of Arctic-midlatitude linkages and large-scale dynamical processes can contribute to the Arctic Amplification. The polar stratospheric dynamics crucially depends on the atmospheric waves at all scales. The winter polar vortex can be disturbed by gravity waves in the middle atmosphere. To investigate the sensitivity of the polar vortex dynamics, large-scale dynamical processes, and the stratospheric pathways of the Arctic-midlatitude linkages to the modification of gravity wave drag, we conduct sensitivity experiments using the global atmospheric model ICON-NWP (ICOsahedral Nonhydrostatic Model for Numerical Weather Prediction). These sensitivity experiments are performed by imposing a repeated annual cycle of the year 1986 for sea surface temperatures and sea ice as lower boundary conditions and for greenhouse gas concentrations as external forcing. This year is selected as both El-Nino Southern Oscillation and Pacific decadal oscillation were in their neutral phase and no explosive volcanic eruption has occurred. Hence, lower boundary and external forcing conditions in this year can serve as a useful proxy for the multi-year mean condition and an estimate of its internal variability. We performed simulations where in the control simulation the sub-grid parameterization scheme for both orographic and non-orographic gravity wave drags are switched on. The other two experiments are identical to the control simulation except that either orographic or non-orographic gravity wave drags are switched off.</p> <p>Recently, deep learning has extraordinarily progressed our ability to recognize complex patterns in big datasets. Deep neural networks have shown great capabilities to capture the dynamical process of the atmosphere. Applying deep learning algorithms on experiments’ results, the impact of gravity wave drag modifications on large-scale mechanisms of the Arctic Amplification will be analyzed. Special emphasis will be put on the effects of gravity wave drag modifications on the polar vortex dynamics.</p>


2021 ◽  
Vol 169 (3-4) ◽  
Author(s):  
Yu Wang ◽  
Pengcheng Yan ◽  
Taichen Feng ◽  
Fei Ji ◽  
Shankai Tang ◽  
...  
Keyword(s):  

Author(s):  
Jingya Cheng ◽  
Qinglong You ◽  
Yuquan Zhou ◽  
Miao Cai ◽  
Nick Pepin ◽  
...  

Abstract Under global warming, terrestrial water resource regulated by precipitation may become more unevenly distributed across space, and some regions are likely to be highly water-stressed. From the perspective of the hydrological cycle, we propose a method to quantify the water resource with potential precipitation capacity in the atmosphere, or hydrometeors which remain suspended in the atmosphere without contributing to precipitation, namely Cloud Water Resource (CWR). Analyzing the characteristics of CWR during 2000-2017, CWR mainly concentrates in the middle-high latitudes which is the cold zone of the Köppen classification. In a warming world, CWR shows a significant increase, especially in the cold zone. Climate change with Arctic amplification and enhanced meridional circulation both contribute to the change of CWR through influencing hydrometeor inflow. By studying the characteristics of CWR and its influencing mechanisms, we demonstrate a perspective for human intervention with potential CWR in the atmosphere to alleviate terrestrial water resource shortages in the future.


2021 ◽  
pp. 137-142
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘Arctic futures’ discusses the future of the Arctic that starts in the Norwegian territory of Svalbard wherein the Global Seed Vault functions as an Arctic sanctuary for the genetic diversity of crops. The Svalbard archipelago is a hotspot of Arctic amplification as rapid warming has been keenly felt by the small community. However, the environmental changes, no matter how stark and widespread, will not dampen interest in economic development and strategic posturing. Arctic states and northern peoples remain eager to improve their social and economic conditions as well as adapt to ongoing climate change. The Arctic is a haven of international peace and cooperation as the Arctic Council is cited as a governance model that others could emulate.


2021 ◽  
pp. 1-13
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘The Arctic world’ begins with the definition of the Arctic, which is understood as the land, sea, and ice lying north of the Arctic Circle set at a latitude of approximately 66.5° N. The Arctic tree line is a robust indicator of Arctic-ness as everything to the north is a landscape characterized by shrubs, dwarf trees, and lichen. Arctic warming occurs at least twice as rapidly as the global average, which is a phenomenon known as Arctic amplification. Since 1980, the warming trajectory in the Arctic has been much steeper than that of the rest of the planet.


Sign in / Sign up

Export Citation Format

Share Document