scholarly journals Impact of Agulhas Leakage on the Atlantic Overturning Circulation in the CCSM4

2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.

2008 ◽  
Vol 21 (6) ◽  
pp. 1403-1416 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Edmo Campos ◽  
Wilco Hazeleger ◽  
Camiel Severijns

Abstract The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere–ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.


2019 ◽  
Vol 32 (5) ◽  
pp. 1483-1500 ◽  
Author(s):  
Timothy Smith ◽  
Patrick Heimbach

Abstract Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attributed to global atmospheric forcing using an inverse modeling approach. The sensitivity of the SAMOC to atmospheric state variables is computed with the adjoint of the Massachusetts Institute of Technology general circulation model, which is fit to 20 years of observational data in a dynamically consistent framework. The dynamical pathways highlighted by these sensitivity patterns show that the domain of influence for the SAMOC is broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. The computed sensitivities are convolved with surface atmospheric state variability from ERA-Interim to attribute the influence of each external forcing variable (e.g., wind stress, precipitation) on the SAMOC from 1992 to 2011. Here, local wind stress perturbations are shown to dominate variability on seasonal time scales while buoyancy forcing plays a minor role, confirming results from past forward perturbation experiments. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. The influence of atmospheric forcing emphasizes the importance of continuous widespread observations of the global atmospheric state for attributing observed AMOC variability.


2021 ◽  
Author(s):  
Stephen Ogungbenro ◽  
Leonard Borchert ◽  
Sebastian Brune ◽  
Vimal Koul ◽  
Levke Caesar ◽  
...  

<p>North Atlantic climate variability is dominated by two important subsystems, the Atlantic Meridional Overturning Circulation (AMOC) and the Sub-Polar Gyre (SPG). While the AMOC is responsible for the transport of mass and heat into higher latitudes, SPG has been linked with large-scale changes in the subpolar marine environment. The changes in strength, intensity and positions of the constituent currents of the SPG impose variabilities in the distribution of heat and salt in the North Atlantic Ocean. Consequently, the predictability on decadal scales of the two subsystems is of huge importance for the understanding of variability in the North Atlantic.</p><p>Our contribution investigates the decadal and multi-decadal predictability of these subsystems within the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). We analyse the model’s capability to predict these subsystems as well as the dependence of the two subsystems on each other. These investigations open new opportunities for a better understanding of the impact of the North Atlantic onto important marine ecosystems and its changes in the upcoming decade.</p>


2007 ◽  
Vol 37 (9) ◽  
pp. 2207-2227 ◽  
Author(s):  
Robert S. Pickart ◽  
Michael A. Spall

Abstract The overturning and horizontal circulations of the Labrador Sea are deduced from a composite vertical section across the basin. The data come from the late-spring/early-summer occupations of the World Ocean Circulation Experiment (WOCE) AR7W line, during the years 1990–97. This time period was chosen because it corresponded to intense wintertime convection—the deepest and densest in the historical record—suggesting that the North Atlantic meridional overturning circulation (MOC) would be maximally impacted. The composite geostrophic velocity section was referenced using a mean lateral velocity profile from float data and then subsequently adjusted to balance mass. The analysis was done in depth space to determine the net sinking that results from convection and in density space to determine the diapycnal mass flux (i.e., the transformation of light water to Labrador Sea Water). The mean overturning cell is calculated to be 1 Sv (1 Sv ≡ 106 m3 s−1), as compared with a horizontal gyre of 18 Sv. The total water mass transformation is 2 Sv. These values are consistent with recent modeling results. The diagnosed heat flux of 37.6 TW is found to result predominantly from the horizontal circulation, both in depth space and density space. These results suggest that the North Atlantic MOC is not largely impacted by deep convection in the Labrador Sea.


2006 ◽  
Vol 36 (11) ◽  
pp. 2012-2024 ◽  
Author(s):  
Carl Wunsch ◽  
Patrick Heimbach

Abstract Results from a global 1° model constrained by least squares to a multiplicity of datasets over the interval 1992–2004 are used to describe apparent changes in the North Atlantic Ocean meridional overturning circulation and associated heat fluxes at 26°N. The least squares fit is both stable and adequately close to the data to make the analysis worthwhile. Changes over the 12 yr are spatially and temporally complex. A weak statistically significant trend is found in net North Atlantic volume flux above about 1200 m, which drops slightly (−0.19 ± 0.05 Sv yr−1; 1 Sv ≡ 106 m3 s−1) but with a corresponding strengthening of the outflow of North Atlantic Deep Water and inflow of abyssal waters. The slight associated trend in meridional heat flux is very small and not statistically significant. The month-to-month variability implies that single-section determinations of heat and volume flux are subject to serious aliasing errors.


Sign in / Sign up

Export Citation Format

Share Document