scholarly journals Atmospheric Origins of Variability in the South Atlantic Meridional Overturning Circulation

2019 ◽  
Vol 32 (5) ◽  
pp. 1483-1500 ◽  
Author(s):  
Timothy Smith ◽  
Patrick Heimbach

Abstract Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attributed to global atmospheric forcing using an inverse modeling approach. The sensitivity of the SAMOC to atmospheric state variables is computed with the adjoint of the Massachusetts Institute of Technology general circulation model, which is fit to 20 years of observational data in a dynamically consistent framework. The dynamical pathways highlighted by these sensitivity patterns show that the domain of influence for the SAMOC is broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. The computed sensitivities are convolved with surface atmospheric state variability from ERA-Interim to attribute the influence of each external forcing variable (e.g., wind stress, precipitation) on the SAMOC from 1992 to 2011. Here, local wind stress perturbations are shown to dominate variability on seasonal time scales while buoyancy forcing plays a minor role, confirming results from past forward perturbation experiments. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. The influence of atmospheric forcing emphasizes the importance of continuous widespread observations of the global atmospheric state for attributing observed AMOC variability.

2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.


2007 ◽  
Vol 37 (9) ◽  
pp. 2207-2227 ◽  
Author(s):  
Robert S. Pickart ◽  
Michael A. Spall

Abstract The overturning and horizontal circulations of the Labrador Sea are deduced from a composite vertical section across the basin. The data come from the late-spring/early-summer occupations of the World Ocean Circulation Experiment (WOCE) AR7W line, during the years 1990–97. This time period was chosen because it corresponded to intense wintertime convection—the deepest and densest in the historical record—suggesting that the North Atlantic meridional overturning circulation (MOC) would be maximally impacted. The composite geostrophic velocity section was referenced using a mean lateral velocity profile from float data and then subsequently adjusted to balance mass. The analysis was done in depth space to determine the net sinking that results from convection and in density space to determine the diapycnal mass flux (i.e., the transformation of light water to Labrador Sea Water). The mean overturning cell is calculated to be 1 Sv (1 Sv ≡ 106 m3 s−1), as compared with a horizontal gyre of 18 Sv. The total water mass transformation is 2 Sv. These values are consistent with recent modeling results. The diagnosed heat flux of 37.6 TW is found to result predominantly from the horizontal circulation, both in depth space and density space. These results suggest that the North Atlantic MOC is not largely impacted by deep convection in the Labrador Sea.


2013 ◽  
Vol 26 (7) ◽  
pp. 2160-2183 ◽  
Author(s):  
Florian Sévellec ◽  
Alexey V. Fedorov

Abstract Variations in the strength of the Atlantic meridional overturning circulation (AMOC) are a major potential source of decadal and longer climate variability in the Atlantic. This study analyzes continuous integrations of tangent linear and adjoint versions of an ocean general circulation model [Océan Parallélisé (OPA)] and rigorously shows the existence of a weakly damped oscillatory eigenmode of the AMOC centered in the North Atlantic Ocean and controlled solely by linearized ocean dynamics. In this particular GCM, the mode period is roughly 24 years, its e-folding decay time scale is 40 years, and it is the least-damped oscillatory mode in the system. Its mechanism is related to the westward propagation of large-scale temperature anomalies in the northern Atlantic in the latitudinal band between 30° and 60°N. The westward propagation results from a competition among mean eastward zonal advection, equivalent anomalous westward advection caused by the mean meridional temperature gradient, and westward propagation typical of long baroclinic Rossby waves. The zonal structure of temperature anomalies alternates between a dipole (corresponding to an anomalous AMOC) and anomalies of one sign (yielding no changes in the AMOC). Further, it is shown that the system is nonnormal, which implies that the structure of the least-damped eigenmode of the tangent linear model is different from that of the adjoint model. The “adjoint” mode describes the sensitivity of the system (i.e., it gives the most efficient patterns for exciting the leading eigenmode). An idealized model is formulated to highlight the role of the background meridional temperature gradient in the North Atlantic for the mode mechanism and the system nonnormality.


2007 ◽  
Vol 34 (23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Rory J. Bingham ◽  
Chris W. Hughes ◽  
Vassil Roussenov ◽  
Richard G. Williams

2016 ◽  
Author(s):  
Pierre Burckel ◽  
Claire Waelbroeck ◽  
Yiming Luo ◽  
Didier Roche ◽  
Sylvain Pichat ◽  
...  

Abstract. We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20–50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). At the onset of Heinrich Stadial 2, the structure of the AMOC significantly changed. The deep Atlantic was probably directly affected by a southern sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.


2021 ◽  
Author(s):  
Mengdie Xie ◽  
John C. Moore ◽  
Liyun Zhao ◽  
Michael Wolovick ◽  
Helene Muri

Abstract. Climate models simulate lower rates of North Atlantic heat transport under greenhouse gas climates than at present due to a reduction in the strength of the North Atlantic meridional overturning circulation (AMOC). Solar geoengineering whereby surface temperatures are cooled by reduction of incoming shortwave radiation may be expected to ameliorate this effect. We investigate this using six Earth System Models running scenarios from GeoMIP (Geoengineering model intercomparison project) in the cases of: i) reduction in the solar constant, mimicking dimming of the sun; ii) sulfate aerosol injection into the lower equatorial stratosphere; and iii) brightening of the ocean regions mimicking enhancing tropospheric cloud amounts. We find that despite across model differences, AMOC decreases are attributable to reduced air-ocean temperature differences, and reduced September Arctic sea ice extent, with no significant impact from changing surface winds or precipitation-evaporation. Reversing the surface freshening of the North Atlantic overturning regions caused by decreased summer sea ice sea helps to promote AMOC. Comparing the geoengineering types after normalizing them for the differences in top of atmosphere radiative forcing, we find that solar dimming is more effective than either marine cloud brightening or stratospheric aerosol injection.


Sign in / Sign up

Export Citation Format

Share Document