Forced and Internal Variability of Tropical Cyclone Track Density in the Western North Pacific*

2014 ◽  
Vol 28 (1) ◽  
pp. 143-167 ◽  
Author(s):  
Wei Mei ◽  
Shang-Ping Xie ◽  
Ming Zhao ◽  
Yuqing Wang

Abstract Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in the western North Pacific between 1979 and 2008 is studied using TC tracks from observations and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes dominate the decadal variability: a nearly basinwide mode, and a dipole mode between the subtropics and lower latitudes. The former mode links to variations in TC number and is forced by SST variations over the off-equatorial tropical central North Pacific, whereas the latter might be associated with the Atlantic multidecadal oscillation. The interannual variability is also controlled by two modes: a basinwide mode driven by SST anomalies of opposite signs located in the tropical central Pacific and eastern Indian Ocean, and a southeast–northwest dipole mode connected to the conventional eastern Pacific ENSO. The seasonal evolution of the ENSO effect on TC activity is further explored via a joint empirical orthogonal function analysis using TC track density of consecutive seasons, and the analysis reveals that two types of ENSO are at work. Internal variability in TC track density is then examined using ensemble simulations from both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal patterns, and it is particularly strong in the South China Sea and along the coast of East Asia. This makes an accurate prediction and projection of TC landfall extremely challenging in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days) are more predictable.

2008 ◽  
Vol 21 (17) ◽  
pp. 4464-4476 ◽  
Author(s):  
Kin Sik Liu ◽  
Johnny C. L. Chan

Abstract This study examines the interdecadal variability of the tropical cyclone (TC) tracks over the western North Pacific (WNP) during the 1960–2005 period. An empirical orthogonal function analysis of the 10-yr Gaussian-filtered annual frequency of TC occurrence shows three leading modes of TC occurrence patterns. The first mode is related to the variation of TC activity in the areas near Japan and its east. The second mode is characterized by a northeast–southwest dipole of TC occurrence anomalies along the southeast coast of China and an east–west dipole near Japan and its east. The third mode is similar to the second mode, except for the absence of the east–west dipole. These patterns are shown to be related to the decadal changes in the prevailing TC tracks. Two characteristic flow patterns related to the first and third modes of TC occurrence pattern are identified. The first pattern is characterized by a north–south dipole of 500-hPa geopotential anomalies over the WNP. Such a pattern may affect the strength and westward extension of the subtropical high and the midlevel steering flow and hence the TC occurrence pattern. The Pacific decadal oscillation (PDO) is found to display a similar dipole-like structure. The decadal variability of TC tracks may therefore be partly attributed to the PDO signal. The second characteristic pattern shows a series of anomalous midlevel atmospheric circulations extending from the sea east of Japan to the south coast of China, which may explain the other part of the decadal variations.


2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2013 ◽  
Vol 26 (3) ◽  
pp. 973-987 ◽  
Author(s):  
Satoru Yokoi ◽  
Yukari N. Takayabu

Abstract Variability in tropical cyclone (TC) activity is a matter of direct concern for affected populations. On interannual and longer time scales, variability in TC passage frequency can be associated with total TC frequency over the concerned ocean basin [basinwide frequency (BF)], the spatial distribution of TC genesis in the basin [genesis distribution (GD)], and the preferable track (PT) that can be considered as a function of genesis locations. To facilitate investigation of mechanisms responsible for the variability, the authors propose an approach of decomposing anomalies in the passage frequency into contributions of variability in BF, GD, and PT, which is named the Integration of Statistics on TC Activity by Genesis Location (ISTAGL) analysis. Application of this approach to TC best track data in the western North Pacific (WNP) basin reveals that overall distribution of the passage frequency trends over the 1961–2010 period is mainly due to the PT trends. On decadal time scales, passage frequency variability in midlatitudes is primarily due to PT variability, while the BF and GD also play roles in the subtropics. The authors further discuss decadal variability over the East China Sea in detail. The authors demonstrate that northward shift of the PT for TCs generated around the Philippines Sea and westward shift for TCs generated in the eastern part of the WNP contribute the variability with almost equal degree. The relationships between these PT shifts and anomalies in environmental circulation fields are also discussed.


2008 ◽  
Vol 21 (6) ◽  
pp. 1171-1191 ◽  
Author(s):  
Joo-Hong Kim ◽  
Chang-Hoi Ho ◽  
Hyeong-Seog Kim ◽  
Chung-Hsiung Sui ◽  
Seon Ki Park

Abstract The variability of observed tropical cyclone (TC) activity (i.e., genesis, track, and landfall) in the western North Pacific (WNP) is examined in relation to the various categories of the Madden–Julian oscillation (MJO) during summer (June–September) for the period 1979–2004. The MJO categories are defined based on the empirical orthogonal function analysis of outgoing longwave radiation data. The number of TCs increases when the MJO-related convection center is located in the WNP. The axis of a preferable genesis region systematically shifts like a seesaw in response to changes in the large-scale environments associated with both the eastward and northward propagation of the MJO and the intraseasonal variability of the WNP subtropical high. Furthermore, the authors show that the density of TC tracks in each MJO category depends on the systematic shift in the main genesis regions at first order. Also, the shift is affected by the prevailing large-scale steering flows in each MJO category. When the MJO-related convection center is found in the equatorial Indian Ocean (the tropical WNP), a dense area of tracks migrates eastward (westward). The effects of extreme ENSO events and the variations occurring during ENSO neutral years are also examined. A statistical analysis of TC landfalls by MJO category is applied in seven selected subareas: the Philippines, Vietnam, South China, Taiwan, East China, Korea, and Japan. While a robust and significant modulation in the number of TC landfalls is observed in south China, Korea, and Japan, the modulation is marginal in the remaining four subareas.


2012 ◽  
Vol 25 (13) ◽  
pp. 4660-4678 ◽  
Author(s):  
Hyeong-Seog Kim ◽  
Chang-Hoi Ho ◽  
Joo-Hong Kim ◽  
Pao-Shin Chu

Abstract Skillful predictions of the seasonal tropical cyclone (TC) activity are important in mitigating the potential destruction from the TC approach/landfall in many coastal regions. In this study, a novel approach for the prediction of the seasonal TC activity over the western North Pacific is developed to provide useful probabilistic information on the seasonal characteristics of the TC tracks and vulnerable areas. The developed model, which is termed the “track-pattern-based model,” is characterized by two features: 1) a hybrid statistical–dynamical prediction of the seasonal activity of seven track patterns obtained by fuzzy c-means clustering of historical TC tracks and 2) a technique that enables researchers to construct a forecasting map of the spatial probability of the seasonal TC track density over the entire basin. The hybrid statistical–dynamical prediction for each pattern is based on the statistical relationship between the seasonal TC frequency of the pattern and the seasonal mean key predictors dynamically forecast by the National Centers for Environmental Prediction Climate Forecast System in May. The leave-one-out cross validation shows good prediction skill, with the correlation coefficients between the hindcasts and the observations ranging from 0.71 to 0.81. Using the predicted frequency and the climatological probability for each pattern, the authors obtain the forecasting map of the seasonal TC track density by combining the TC track densities of the seven patterns. The hindcasts of the basinwide seasonal TC track density exhibit good skill in reproducing the observed pattern. The El Niño–/La Niña–related years, in particular, tend to show a better skill than the neutral years.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Lin K. Chang ◽  
Yasumasa Miyazawa ◽  
Swadhin Behera

AbstractThe out of phase tropical cyclone (TC) formation in the subtropical and tropical western North Pacific associated with local low-level wind vorticity anomaly, driven by the remote central and eastern equatorial Pacific warming/cooling, is investigated based on the reanalysis and observational data in the period of 1979−2017. TC frequencies in the subtropical and tropical western North Pacific appear to be connected to different remote heating/cooling sources and are linked to eastern and central Pacific warming/cooling, which are in turn related to canonical El Niño/Southern Oscillation (ENSO) and ENSO Modoki, respectively. TCs formed in subtropics (SfTC) are generally found to be associated with a dipole in wind vorticity anomaly, which is driven by the tropical eastern Pacific warming/cooling. Tropically formed TCs (TfTC) are seen to be triggered by the single-core of wind vorticity anomaly locally associated with the warming/cooling of central and eastern Pacific. The predicted ENSOs and ENSO Modokis, therefore, provide a potential source of seasonal predictability for SfTC and TfTC frequencies.


2016 ◽  
Vol 29 (10) ◽  
pp. 3731-3751 ◽  
Author(s):  
Han-Kyoung Kim ◽  
Kyong-Hwan Seo

Abstract Tropical cyclone (TC) tracks over the western North Pacific (WNP) in 1979–2013 are classified by a self-organizing map technique. A false detection rate method identifies five optimal TC clusters. Physical mechanisms of the intraseasonal and interannual variations in the TC genesis frequency are investigated for each cluster. The five clusters are separated by genesis location, from the westernmost area (east of the Philippines, C1) to the easternmost (~150°E, C5) onset area over the WNP. The intraseasonal Madden–Julian oscillation (MJO) significantly affects the genesis frequency for all clusters except for C5. In particular, MJO phases 5 and 6 (1 and 2) provide significantly favorable (unfavorable) large-scale conditions for TC genesis. Two types of El Niño–Southern Oscillation influence the interannual variation of the genesis frequency for only C2 (generated over the western Philippine Sea and East China Sea) and C4 (formed near the eastern Philippine Sea). Enhanced eastern Pacific sea surface temperature (SST) anomalies lead to a ~40% decrease in the C2 TC frequency through a reversed Walker circulation with downward motion over the WNP. Conversely, increased central Pacific SST anomalies generate a cyclonic Rossby wave northwest of the forcing, inducing a significant increase (~50%) in the C4 TC frequency. The interannual variability for the C5 TCs is strongly controlled by the variation of the western Pacific subtropical high (WPSH). A positive WPSH variation reduces the C5 TC genesis frequency by 66%, while negative WPSH anomalies enhance the frequency by 50%. A prediction scheme using information from the first four 6-h TC locations demonstrates a skillful determination of TC clusters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Basconcillo ◽  
Eun-Jeong Cha ◽  
Il-Ju Moon

AbstractThe 2018 boreal summer in the Western North Pacific (WNP) is highlighted by 17 tropical cyclones (TC)—the highest record during the reported reliable years of TC observations. We contribute to the existing knowledge pool on this extreme TC frequency record by showing that the simultaneous highest recorded intensity of the WNP summer monsoon prompted the eastward extension of the monsoon trough and enhancement of tropical convective activities, which are both favorable for TC development. Such changes in the WNP summer monsoon environment led to the extreme TC frequency record during the 2018 boreal summer. Meanwhile, the highest record in TC frequency and the intensity of the WNP summer monsoon are both attributed with the combined increase in the anomalous westerlies originating from the cold tropical Indian Ocean sea surface temperature (SST) anomalies drawn towards the convective heat source that is associated with the warm central Pacific SST anomalies. Our results provide additional insights in characterizing above normal tropical cyclone and summer monsoon activities in the WNP in understanding seasonal predictable horizons in the WNP, and in support of disaster risk and impact reduction.


2012 ◽  
Vol 25 (6) ◽  
pp. 2104-2122 ◽  
Author(s):  
Chun-Chieh Wu ◽  
Ruifen Zhan ◽  
Yi Lu ◽  
Yuqing Wang

Abstract As synoptic storms, tropical cyclones (TCs) are highly nonlinear systems resulting from multiscale interactions. In particular, the genesis of TCs involves complex nonlinear processes, exhibiting strong internal variability in climate model simulations. This study attempts to examine such internal variability of dynamically downscaled TCs over the western North Pacific Ocean based on four simulations of 20 typhoon seasons (1982−2001) initialized on 4 successive days using the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM). The results show that on both seasonal and interannual time scales, the initial conditions significantly affect the downscaled TC activity, with the largest internal variability occurring in August on the seasonal time scale. The spreads between any of the individual simulations and the ensemble mean are comparable to and in some circumstances greater than the interannual variation of the observed TC frequency. The internal variability of the downscaled TC activity is found to be insensitive to the amplitude and the pattern of the initial perturbations. However, day-to-day model solutions are strongly affected by the internal variability. As a result, the development of nonlinear atmospheric instabilities significantly modulates the genesis and development of the TC-like vortices, leading to the large internal variability of the downscaled TC activity. In addition to the traditional initial value problem, criteria (in particular, threshold values) used in the TC detection contribute equally to the internal variability of the downscaled TCs in the simulations. Consistent with earlier studies, the results from this study also show that the ensemble mean provides the better downscaled information on seasonal and interannual frequencies of TC genesis and occurrence.


Sign in / Sign up

Export Citation Format

Share Document