Impact of the South and North Pacific Meridional Modes on the El Niño–Southern Oscillation: Observational Analysis and Comparison

2017 ◽  
Vol 30 (5) ◽  
pp. 1705-1720 ◽  
Author(s):  
Qingye Min ◽  
Jingzhi Su ◽  
Renhe Zhang

Abstract An interannual variability mode in the southeast Pacific with a physical interpretation similar to that of the Pacific meridional mode (PMM) in the North Pacific was recently identified. Both modes have been shown to influence the subsequent development of El Niño–Southern Oscillation (ENSO) events. This study investigates the relationship between ENSO and the two PMMs using observational and reanalysis data. The results show that the South Pacific meridional mode (SPMM) mainly favors the development of sea surface temperature anomalies (SSTAs) in the eastern equatorial Pacific, whereas the North Pacific meridional mode (NPMM) mainly favors the development of SSTAs in the central equatorial Pacific. Both of the meridional modes are considered to be analogous in terms of their physical interpretation and can be important predictors of ENSO when considering different flavors of ENSO. Neither the NPMM nor the SPMM can be precluded as accurate indicators when forecasting particular flavors of ENSO.

2017 ◽  
Vol 30 (22) ◽  
pp. 9167-9181 ◽  
Author(s):  
Jing Ma ◽  
Shang-Ping Xie ◽  
Haiming Xu

Abstract Seasonal prediction of El Niño–Southern Oscillation (ENSO) employs the ensemble method, which samples the uncertainty in initial conditions. While much attention has been given to the ensemble mean, the ensemble spread limits the reliability of the forecast. Spatiotemporal coevolution of intermember anomalies of sea surface temperature (SST) and low-level winds over the Pacific is examined in ensemble hindcasts. Two types of evolution of intermember SST anomalies in the equatorial Pacific are identified. The first features an apparent southwestward propagation of the SST spread from the subtropical northeastern Pacific southeast of Hawaii to the central equatorial Pacific in boreal winter–spring, indicative of the precursor effect of the North Pacific meridional mode (NPMM) on ENSO variability. Extratropical atmospheric variability generates ensemble spread in ENSO through wind–evaporation–SST (WES) in the subtropical northeastern Pacific and then Bjerknes feedback on the equator. In the second type, ensemble spread grows in the equatorial Pacific with a weak contribution from the subtropical southeastern Pacific in summer. Thus, the extratropical influence on ENSO evolution is much stronger in the Northern Hemisphere than in the Southern Hemisphere. The growth of Niño-4 SST ensemble spread shows a strong seasonality. In hindcasts initialized in September–March, the Niño-4 SST spread grows rapidly in January–April, stabilizes in May–June, and grows again in July–September. The rapid growth of the Niño-4 SST spread in January–April is due to the arrival of NPMM, while the slowdown in May–June and rapid growth in July–September are attributable primarily to the seasonality of equatorial ocean–atmosphere interaction. NPMM contributes to the ensemble spread in equatorial Pacific SST, limiting the reliability of ENSO prediction.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2021 ◽  
pp. 1-43
Author(s):  
Jae-Heung Park ◽  
Mi-Kyung Sung ◽  
Young-Min Yang ◽  
Jiuwei Zhao ◽  
Soon-Il An ◽  
...  

AbstractThe North Pacific Oscillation (NPO), a primary atmospheric mode over the North Pacific in boreal winter, is known to trigger the El Niño-Southern Oscillation (ENSO) in the following winter, the process of which is recognized as the seasonal footprinting mechanism (SFM). Based on the analysis of model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we found that the SFM acts differently among models, and the correlation between the NPO and subsequent ENSO events, called the SFM efficiency, depends on the background mean state of the model. That is, SFM efficiency becomes stronger as the climatological position of the Pacific Intertropical Convergence Zone (ITCZ) moves poleward, representing an intensification of the northern branch of the ITCZ. When the Pacific ITCZ is located poleward, the wind-evaporation-sea surface temperature (SST) feedback becomes stronger as the precipitation response to the SST anomaly is stronger in higher latitudes compared to that of lower latitudes. In addition, such active ocean-atmosphere interactions enhance NPO variability, favoring the SFM to operate efficiently and trigger an ENSO event. Consistent with the model results, the observed SFM efficiency increased during the decades in which the northern branch of the climatological ITCZ was intensified, supporting the importance of the tropical mean state of precipitation around the Pacific ITCZ.


2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


Sign in / Sign up

Export Citation Format

Share Document