scholarly journals The Role of Springtime Arctic Clouds in Determining Autumn Sea Ice Extent

2016 ◽  
Vol 29 (18) ◽  
pp. 6581-6596 ◽  
Author(s):  
Christopher J. Cox ◽  
Taneil Uttal ◽  
Charles N. Long ◽  
Matthew D. Shupe ◽  
Robert S. Stone ◽  
...  

Abstract Recent studies suggest that the atmosphere conditions arctic sea ice properties in spring in a way that may be an important factor in predetermining autumn sea ice concentrations. Here, the role of clouds in this system is analyzed using surface-based observations from Barrow, Alaska. Barrow is a coastal location situated adjacent to the region where interannual sea ice variability is largest. Barrow is also along a main transport pathway through which springtime advection of atmospheric energy from lower latitudes to the Arctic Ocean occurs. The cloud contribution is quantified using the observed surface radiative fluxes and cloud radiative forcing (CRF) derived therefrom, which can be positive or negative. In low sea ice years enhanced positive CRF (increased cloud cover enhancing longwave radiative forcing) in April is followed by decreased negative CRF (decreased cloud cover allowing a relative increase in shortwave radiative forcing) in May and June. The opposite is true in high sea ice years. In either case, the combination and timing of these early and late spring cloud radiative processes can serve to enhance the atmospheric preconditioning of sea ice. The net CRF (April and May) measured at Barrow from 1993 through 2014 is negatively correlated with sea ice extent in the following autumn (r2 = 0.33; p < 0.01). Reanalysis data appear to capture the general timing and sign of the observed CRF anomalies at Barrow and suggest that the anomalies occur over a large region of the central Arctic Ocean, which supports the link between radiative processes observed at Barrow and the broader arctic sea ice extent.

2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


2010 ◽  
Vol 10 (2) ◽  
pp. 777-787 ◽  
Author(s):  
C. Matsoukas ◽  
N. Hatzianastassiou ◽  
A. Fotiadi ◽  
K. G. Pavlakis ◽  
I. Vardavas

Abstract. We estimate the effect of the Arctic sea ice on the absorbed (net) solar flux using a radiative transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP) and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause an annually averaged 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently an annually averaged 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Baffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.


2018 ◽  
Vol 12 (2) ◽  
pp. 433-452 ◽  
Author(s):  
Alek A. Petty ◽  
Julienne C. Stroeve ◽  
Paul R. Holland ◽  
Linette N. Boisvert ◽  
Angela C. Bliss ◽  
...  

Abstract. The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative “compactness” of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, “New Arctic”, sea ice regime.


2017 ◽  
Vol 11 (5) ◽  
pp. 2111-2116 ◽  
Author(s):  
Christian Katlein ◽  
Stefan Hendricks ◽  
Jeffrey Key

Abstract. On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortwave energy deposited into the polar oceans.


2018 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore i) whether the MTP from the main moisture sources for the Arctic region is linked with interannual fluctuations in the extent of Arctic Sea ice superimposed on its decline and ii) the role of extreme MTP events in the inter-daily change of the Arctic Sea Ice Extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest 1) that ice-melting at the scale of interannual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter, and a decrease in spring and, 2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer and autumn; in these 3 seasons it therefore contributes to Arctic Sea Ice Melting. These patterns differ sharply from that linked to the decline, especially in summer when the opposite trend applies.


2017 ◽  
Vol 31 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Yuan Wang ◽  
Jonathan H. Jiang ◽  
Hui Su ◽  
Yong-Sang Choi ◽  
Lei Huang ◽  
...  

AbstractObservations show that the Arctic sea ice cover has been shrinking at an unprecedented rate since the 1970s. Even though the accumulation of greenhouse gases in the atmosphere has been closely linked with the loss of Arctic sea ice, the role of atmospheric aerosols in past and future Arctic climate change remains elusive. Using a state-of-the-art fully coupled climate model, the authors assess the equilibrium responses of the Arctic sea ice to the different aerosol emission scenarios and investigate the pathways by which aerosols impose their influence in the Arctic. These sensitivity experiments show that the impacts of aerosol perturbations on the pace of sea ice melt effectively modulate the ocean circulation and atmospheric feedbacks. Because of the contrasting evolutions of particulate pollution in the developed and developing countries since the 1970s, the opposite aerosol forcings from different midlatitude regions are nearly canceled out in the Arctic during the boreal summer, resulting in a muted aerosol effect on the recent sea ice changes. Consequently, the greenhouse forcing alone can largely explain the observed Arctic sea ice loss up to the present. In the next few decades, the projected alleviation of particulate pollution in the Northern Hemisphere can contribute up to 20% of the total Arctic sea ice loss and 0.7°C surface warming over the Arctic. The authors’ model simulations further show that aerosol microphysical effects on the Arctic clouds are the major component in the total aerosol radiative forcing over the Arctic. Compared to the aerosol-induced energy imbalance in lower latitudes outside the Arctic, the local radiative forcing by aerosol variations within the Arctic, due to either local emissions or long-range transports, is more efficient in determining the sea ice changes and Arctic climate change.


2009 ◽  
Vol 9 (5) ◽  
pp. 21041-21072
Author(s):  
C. Matsoukas ◽  
N. Hatzianastassiou ◽  
A. Fotiadi ◽  
K. G. Pavlakis ◽  
I. Vardavas

Abstract. We estimate the effect of the Arctic sea ice on the absorbed (net) solar flux using a radiation transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP) and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause a 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently a 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Buffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.


2017 ◽  
Author(s):  
Alek A. Petty ◽  
Julienne C. Stroeve ◽  
Paul R. Holland ◽  
Linette N. Boisvert ◽  
Angela C. Bliss ◽  
...  

Abstract. 2016 was an interesting year in the Arctic, with record low sea ice at the start of the year, but a summer (September) Arctic sea ice extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area to analyse the relative 'compactness' of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher than expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low concentration/compactness ice cover, but were not sufficient to cause more widespread melt out and a new record low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record early melt onset in the North Atlantic sector of the Arctic. Our results also show record late 2016 freeze up in the Central Arctic, North Atlantic. and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, 'New Arctic', sea ice regime.


Sign in / Sign up

Export Citation Format

Share Document