Impacts of Anomalous Midlatitude Cyclone Activity over East Asia during Summer on the Decadal Mode of East Asian Summer Monsoon and Its Possible Mechanism

2017 ◽  
Vol 30 (2) ◽  
pp. 739-753 ◽  
Author(s):  
Haishan Chen ◽  
Fangda Teng ◽  
Wanxin Zhang ◽  
Hong Liao

By using an objective identification and tracking algorithm of the cyclone, the statistics of midlatitude cyclone activity in East Asia during summer for the period 1979–2013 were analyzed. The impact of the midlatitude summer cyclone anomalies in East Asia on the decadal mode of East Asian summer monsoon (EASM) was investigated and possible mechanisms were proposed. The possible reasons for the anomalous cyclone activity from the perspective of land surface thermal forcing were also explored. Results indicate that the midlatitude summer cyclone activity over East Asia exhibits decadal changes in the period of 1979–2013 and is significantly weakened after early 1990s. Further analysis indicates that there is a close relationship between the midlatitude summer cyclone activity over East Asia and the decadal variation of EASM; when the midlatitude summer cyclone activity over East Asia is strong (weak), EASM tends to be intensified (weakened), and the weak cyclone activity after 1993 generally coincides with the decadal weakening of EASM. Moreover, there is a close linkage between the weakening of cyclonic activity after the early 1990s and the nonuniform surface warming of the Eurasian continent. Significant warming to the west of Mongolia tends to weaken the north–south temperature gradient and the atmospheric baroclinicity to its south and eventually can lead to weakening of the midlatitude cyclone activity over East Asia.

2018 ◽  
Vol 9 (2) ◽  
pp. 427-439 ◽  
Author(s):  
Jiawei Liu ◽  
Haiming Xu ◽  
Jiechun Deng

Abstract. Much research is needed regarding the two long-term warming targets of the 2015 Paris Agreement, i.e., 1.5 and 2 ∘C above pre-industrial levels, especially from a regional perspective. The East Asian summer monsoon (EASM) intensity change and associated precipitation change under both warming targets are explored in this study. The multimodel ensemble mean projections by 19 CMIP5 models show small increases in EASM intensity and general increases in summer precipitation at 1.5 and 2 ∘C warming, but with large multimodel standard deviations. Thus, a novel multimodel ensemble pattern regression (EPR) method is applied to give more reliable projections based on the concept of emergent constraints, which is effective at tightening the range of multimodel diversity and harmonize the changes of different variables over the EASM region. Future changes projected by using the EPR method suggest decreased precipitation over the Meiyu belt and increased precipitation over the high latitudes of East Asia and Central China, together with a considerable weakening of EASM intensity. Furthermore, reduced precipitation appears over 30–40∘ N of East Asia in June and over the Meiyu belt in July, with enhanced precipitation at their north and south sides. These changes in early summer are attributed to a southeastward retreat of the western North Pacific subtropical high (WNPSH) and a southward shift of the East Asian subtropical jet (EASJ), which weaken the moisture transport via southerly wind at low levels and alter vertical motions over the EASM region. In August, precipitation would increase over the high latitudes of East Asia with more moisture from the wetter area over the ocean in the east and decrease over Japan with westward extension of WNPSH. These monthly precipitation changes would finally contribute to a tripolar pattern of EASM precipitation change at 1.5 and 2 ∘C warming. Corrected EASM intensity exhibits a slight difference between 1.5 and 2 ∘C, but a pronounced moisture increase during extra 0.5 ∘C leads to enhanced EASM precipitation over large areas in East Asia at 2 ∘C warming.


2020 ◽  
Vol 33 (24) ◽  
pp. 10469-10488
Author(s):  
Wanxin Zhang ◽  
Haishan Chen ◽  
Liming Zhou ◽  
Botao Zhou ◽  
Jie Zhang ◽  
...  

AbstractPrevious studies detected significant negative correlations between the nonuniform land surface warming and the decadal weakened activities of the summer extratropical cyclones (ECs) over East Asia and the East Asian summer monsoon (EASM) after the early 1990s. Here such relationships are further examined and the possible mechanisms are explored via numerical sensitivity experiments with a regional climate model (RegCM4.5). The positive/negative sensible heat flux (SH) anomalies were added as a forcing to a key region near 50°N of East Asia in RegCM4.5 to simulate the observed ground surface temperature (GST) anomalies. The model results suggest that the nonuniform land surface warming over the Lake Baikal area (50°–60°N, 90°–120°E) can indeed cause the weakening of the extratropical cyclogenesis and affect the decadal weakening of the EASM. Warm (cold) GST forcing over the key GST region can lead to decreasing (increasing) atmospheric baroclinicity and related energy conversion of the EC activity over the key EC region (40°–50°N, 90°–120°E), resulting in an evidently weakening (enhancing) of the ECs over East Asia. Meanwhile, precipitation shows a dipole pattern with significantly suppressed (enhanced) precipitation in northern and northeastern China, and slightly enhanced (suppressed) rainfall south of 40°N of East Asia, mainly over the East China Sea. Lake Baikal and its adjacent areas are occupied by a strong anticyclonic (cyclonic) circulation while the southeast coastal areas of China have a relatively weak cyclonic (anticyclonic) circulation accompanied with an anomalous northeasterly (southwesterly) wind to the southeast of the anticyclonic circulation, which is opposite to (coincident with) the atmospheric circulation anomalies that are associated with the second mode of the EASM.


2021 ◽  
Author(s):  
Yong Sun ◽  
Haibin Wu ◽  
Gilles Ramstein ◽  
Bo Liu ◽  
Yan Zhao ◽  
...  

Abstract The mid-Holocene (MH; 6 ka) is one of the benchmark periods for the Paleoclimate Modeling Intercomparison Project (PMIP) and provides a unique opportunity to study monsoon dynamics and orbital forcing (i.e., mostly precession) that differ significantly from the present day. We conducted a data–model comparison along with a dynamic analysis to investigate monsoonal (i.e., East Asian summer monsoon; EASM) precipitation changes over East Asia during the MH. We used the three phases of the PMIP simulations for the MH, and quantitatively compared the model results with pollen-based climate records. The data–model comparison shows an overall increase in precipitation, except for a local decrease in EASM precipitation during the MH. Decomposition of the moisture budget into thermodynamic, dynamic components and co-variations in both allowed us to assess the relative role of thermodynamic and dynamic components in controlling EASM precipitation during the MH, and to investigate the precipitation changes obtained from pollen records in terms of physical processes. We show that the dynamic effect, rather than the thermodynamic effect, is the dominant control in increased EASM precipitation during the MH in both the proxy records and models. The dynamic increase in precipitation results mainly from the enhancement of horizontal monsoonal moisture transport that is caused by intensified stationary eddy horizontal circulation over East Asia. In addition, a cloud cooling effect reduced the thermodynamic contribution to the increase in EASM precipitation during the MH.


2015 ◽  
Vol 28 (24) ◽  
pp. 9977-9996 ◽  
Author(s):  
Guijie Zhao ◽  
Gang Huang ◽  
Renguang Wu ◽  
Weichen Tao ◽  
Hainan Gong ◽  
...  

Abstract The East Asian summer monsoon (EASM) and its variability involve circulation systems in both the tropics and midlatitudes as well as in both the lower and upper troposphere. Considering this fact, a new EASM index (NEWI) is proposed based on 200-hPa zonal wind, which takes into account wind anomalies in the southern (about 5°N), middle (about 20°N), and northern areas (about 35°N) of East Asia. The NEWI can capture the interannual EASM-related climate anomalies and the interdecadal variability well. Compared to previous indices, the NEWI shows a better performance in describing precipitation and air temperature variations over East Asia. It can also show distinct climate anomalous features in early and late summer. The NEWI is tightly associated with the East Asian–Pacific or the Pacific–Japan teleconnection, suggesting a possible role of internal dynamics in the EASM variability. Meanwhile, the NEWI is significantly linked to El Niño–Southern Oscillation and tropical Indian Ocean sea surface temperature anomalies. Furthermore, the NEWI is highly predictable in the ENSEMBLES models, indicating its advantage for operational prediction of the EASM. The physical mechanism of the EASM variability as represented by the NEWI is also explicit. Both warm advection anomalies of temperature by anomalous westerly winds and the advection of anomalous positive relative vorticity by northerly basic winds cause anomalous ascending motion over the mei-yu–changma–baiu rainfall area, and vice versa over the South China Sea area. Hence, this NEWI would be a good choice to study, monitor, and predict the EASM.


2017 ◽  
Vol 30 (14) ◽  
pp. 5205-5220 ◽  
Author(s):  
Claire Burke ◽  
Peter Stott

The East Asian summer monsoon (EASM) is important for bringing rainfall to large areas of China. Historically, variations in the EASM have had major impacts including flooding and drought. The authors present an analysis of the impact of anthropogenic climate change on EASM rainfall in eastern China using a newly updated attribution system. The results suggest that anthropogenic climate change has led to an overall decrease in total monsoon rainfall over the past 65 years and an increased number of dry days. However, the model also predicts that anthropogenic forcings have caused the most extreme heavy rainfall events to become shorter in duration and more intense. With the potential for future changes in aerosol and greenhouse gas emissions, historical trends in monsoon rainfall may not be indicative of future changes, although extreme rainfall is projected to increase over East Asia with continued warming in the region.


Sign in / Sign up

Export Citation Format

Share Document