The Climatology of the Atmospheric Boundary Layer in Contemporary Global Climate Models
Here, we present the climatology of the planetary boundary layer depth in 18 contemporary general circulation models (GCMs) in simulations of the late-twentieth-century climate that were part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). We used a bulk Richardson methodology to establish the boundary layer depth from the 6-hourly synoptic-snapshot data available in the CMIP5 archives. We present an ensemble analysis of the climatological mean, diurnal cycle, and seasonal cycle of the boundary layer depth in these models and compare it to the climatologies from the ECMWF ERA-Interim reanalysis. Overall, we find that the CMIP5 models do a reasonably good job of reproducing the distribution of mean boundary layer depth, although the geographical patterns vary considerably between models. However, the models are biased toward weaker diurnal and seasonal cycles in the boundary layer depth and generally produce much deeper boundary layers at night and during the winter than are found in the reanalysis. These biases are likely to reduce the ability of these models to accurately represent other properties of the diurnal and seasonal cycles, and the sensitivity of these cycles to climate change.