scholarly journals The Climatology of the Atmospheric Boundary Layer in Contemporary Global Climate Models

2018 ◽  
Vol 31 (22) ◽  
pp. 9151-9173 ◽  
Author(s):  
Richard Davy

Here, we present the climatology of the planetary boundary layer depth in 18 contemporary general circulation models (GCMs) in simulations of the late-twentieth-century climate that were part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). We used a bulk Richardson methodology to establish the boundary layer depth from the 6-hourly synoptic-snapshot data available in the CMIP5 archives. We present an ensemble analysis of the climatological mean, diurnal cycle, and seasonal cycle of the boundary layer depth in these models and compare it to the climatologies from the ECMWF ERA-Interim reanalysis. Overall, we find that the CMIP5 models do a reasonably good job of reproducing the distribution of mean boundary layer depth, although the geographical patterns vary considerably between models. However, the models are biased toward weaker diurnal and seasonal cycles in the boundary layer depth and generally produce much deeper boundary layers at night and during the winter than are found in the reanalysis. These biases are likely to reduce the ability of these models to accurately represent other properties of the diurnal and seasonal cycles, and the sensitivity of these cycles to climate change.

2018 ◽  
Vol 12 (10) ◽  
pp. 3287-3292 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Richard J. Hall

Abstract. Recent studies note a significant increase in high-pressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt records observed on the Greenland Ice Sheet (GrIS). Here we compare reanalysis-based GBI records with those from the Coupled Model Intercomparison Project 5 (CMIP5) suite of global climate models over 1950–2100. We find that the recent summer GBI increase lies well outside the range of modelled past reconstructions and future GBI projections (RCP4.5 and RCP8.5). The models consistently project a future decrease in GBI (linked to an increase in NAO), which highlights a likely key deficiency of current climate models if the recently observed circulation changes continue to persist. Given well-established connections between atmospheric pressure over the Greenland region and air temperature and precipitation extremes downstream, e.g. over northwest Europe, this brings into question the accuracy of simulated North Atlantic jet stream changes and resulting climatological anomalies over densely populated regions of northern Europe as well as of future projections of GrIS mass balance produced using global and regional climate models.


2018 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Richard J. Hall

Abstract. Recent studies note a significant increase in high-pressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt records observed on the Greenland Ice Sheet (GrIS). Here we compare reanalysis-based GBI records with those from the Coupled Model Intercomparison Project 5 (CMIP5) suite of global climate models over 1950–2100. We find that the recent summer GBI increase lies well outside the range of modelled past reconstructions (Historical scenario) and future GBI projections (RCP4.5 and RCP8.5). The models consistently project a future decrease in GBI (linked to an increase in NAO), which highlights a likely key deficiency of current climate models if the recently-observed circulation changes continue to persist. Given well-established connections between atmospheric pressure over the Greenland region and air temperature and precipitation extremes downstream, e.g. over Northwest Europe, this brings into question the accuracy of simulated North Atlantic jet stream changes and resulting climatological anomalies over densely populated regions of northern Europe as well as of future projections of GrIS mass balance produced using global and regional climate models.


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2020 ◽  
Author(s):  
Pedro Herrera-Lormendez ◽  
Nikolaos Mastrantonas ◽  
Jörg Matschullat ◽  
Hervé Douville

<p>Circulation classifications are a simple tool given their ability to portray aspects of day-to-day weather. As we start facing a dynamical response in general circulation patterns due to anthropogenic global warming, circulation changes can enhance or mitigate regional and local behaviour of extreme weather events.</p> <p>A weather type (WT) automatic classification, developed by Jenkinson-Collison (JC), is used to evaluate past and future changes in the seasonal frequencies of synoptic weather patterns over central and western Europe. A set of three reanalyses and four Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) are used, based on daily Sea Level Pressure (SLP) data.</p> <p>Discrepancies are found in the model outputs as they fall short of capturing interannual variabilities when compared to the reanalyses. Cyclonic and westerly circulations tend to be overestimated, whereas anticyclonics are underestimated.</p> <p>The projected frequencies, based on the Shared Socioeconomic Pathway 5 (SSP5) experiment, suggest significant increasing trends for unclassified WT (characterized by weak pressure gradients) during their summer half-year persistency for the coming 21<sup>st</sup> century. Winter trends indicate a surge in westerlies and a reduction in the events of cyclonic circulations and easterly flows. The results of this study support evidence of emergent changes in the occurrence of major synoptic configurations over Europe.</p>


2018 ◽  
Vol 11 (1) ◽  
pp. 200-216 ◽  
Author(s):  
Reza Haji Hosseini ◽  
Saeed Golian ◽  
Jafar Yazdi

Abstract Assessment of climate change in future periods is considered necessary, especially with regard to probable changes to water resources. One of the methods for estimating climate change is the use of the simulation outputs of general circulation models (GCMs). However, due to the low resolution of these models, they are not applicable to regional and local studies and downscaling methods should be applied. The purpose of the present study was to use GCM models' outputs for downscaling precipitation measurements at Amameh station in Latyan dam basin. For this purpose, the observation data from the Amameh station during the 1980–2005 period, 26 output variables from two GCM models, namely, HadCM3 and CanESM2 were used. Downscaling was performed by three data-driven methods, namely, artificial neural network (ANN), nonparametric K-nearest neighborhood (KNN) method, and adaptive network-based fuzzy inference system method (ANFIS). Comparison of the monthly results showed the superiority of KNN compared to the other two methods in simulating precipitation. However, all three, ANN, KNN, and ANFIS methods, showed satisfactory results for both HadDCM3 and CanESM2 GCM models in downscaling precipitation in the study area.


2010 ◽  
Vol 49 (10) ◽  
pp. 2147-2158 ◽  
Author(s):  
Peter Caldwell

Abstract In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California and compared. Several averaging methodologies are considered and all are found to give similar values when the model grid spacing is less than 3°. This suggests that California is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict California precipitation. This appears to be due mainly to the overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge–satellite observations, which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait that does not seem to be tied to model resolution. The GCM daily and interannual variabilities are generally underpredicted.


2014 ◽  
Vol 6 (2) ◽  
pp. 288-299 ◽  
Author(s):  
K. Srinivasa Raju ◽  
D. Nagesh Kumar

Eleven general circulation models/global climate models (GCMs) – BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1 – are evaluated for Indian climate conditions using the performance indicator, skill score (SS). Two climate variables, temperature T (at three levels, i.e. 500, 700, 850 mb) and precipitation rate (Pr) are considered resulting in four SS-based evaluation criteria (T500, T700, T850, Pr). The multicriterion decision-making method, technique for order preference by similarity to an ideal solution, is applied to rank 11 GCMs. Efforts are made to rank GCMs for the Upper Malaprabha catchment and two river basins, namely, Krishna and Mahanadi (covered by 17 and 15 grids of size 2.5° × 2.5°, respectively). Similar efforts are also made for India (covered by 73 grid points of size 2.5° × 2.5°) for which an ensemble of GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCR-BCCM2.0 and GFDL2.1 is found to be suitable. It is concluded that the proposed methodology can be applied to similar situations with ease.


2018 ◽  
Vol 11 (4) ◽  
pp. 1607-1626 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ∼ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2021 ◽  
Author(s):  
Pedro Herrera-Lormendez ◽  
Jörg Matschullat ◽  
Hervé Douville

<p>Circulation classifications are a simple tool given their ability to portray aspects of day-to-day weather. As we start facing a dynamical response in general circulation patterns due to anthropogenic global warming, circulation changes can enhance or mitigate regional and local behaviour of extreme weather events.</p><p>An automatic weather type (WT) classification, developed by Jenkinson-Collison, is used to evaluate past and future changes in seasonal frequencies of synoptic weather patterns over central and western Europe. A set of three reanalyses and eight Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) are used, based on daily Sea Level Pressure (SLP) data.</p><p>Discrepancies are found in some of the model outputs as some fall short of capturing interannual variabilities when compared to reanalyses. Cyclonic and westerly circulations tend to be overestimated, whereas anticyclonic are underestimated.</p><p>Based on the historical data and Shared Socioeconomic Pathway 5 (SSP5-8.5) scenario, the evaluated trends suggest more robust signals during the summer half-years given their lesser synoptic-scale variability. During this season, increasing frequencies are found for the WT characterized by weak pressure gradients, mostly at the expense of decreasing frequencies of the westerlies. Our findings indicate that the time of emergence of these signals only occurs towards the end of the 21<sup>st</sup> century, even in such a high-emission scenario.</p>


Sign in / Sign up

Export Citation Format

Share Document