scholarly journals Contribution of the Interdecadal Pacific Oscillation to the Recent Abrupt Decrease in Tropical Cyclone Genesis Frequency over the Western North Pacific since 1998

2018 ◽  
Vol 31 (20) ◽  
pp. 8211-8224 ◽  
Author(s):  
Jiuwei Zhao ◽  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Haiming Xu

Previous studies have documented an abrupt decrease of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1998. In this study, results from an objective clustering analysis demonstrated that this abrupt decrease is primarily related to the decrease in a cluster of TCs (C1) that mostly formed over the southeastern WNP, south of 15°N and east of the Philippines, and possessed long tracks. Further statistical analyses based on both best track TC data and global reanalysis data during 1980–2015 revealed that the genesis of C1 TCs was significantly modulated by the interdecadal Pacific oscillation (IPO), whose recent negative phase since 1998 corresponded to a La Niña–like sea surface temperature anomaly (SSTA) pattern, which strengthened the Walker circulation in the tropical Pacific and weakened the WNP monsoon trough, suppressing genesis of C1 TCs in the southeastern WNP and predominantly contributing to the decrease in TC genesis frequency over the entire WNP basin. These findings were further confirmed by results from similar analyses based on longer observational datasets and also the outputs from a 500-yr preindustrial general circulation model experiment using the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model, version 3. Additional analysis indicates that the decrease in C1 TC genesis frequency in the recent period was dominated during August–October, with the largest decrease in October.

2016 ◽  
Vol 29 (10) ◽  
pp. 3731-3751 ◽  
Author(s):  
Han-Kyoung Kim ◽  
Kyong-Hwan Seo

Abstract Tropical cyclone (TC) tracks over the western North Pacific (WNP) in 1979–2013 are classified by a self-organizing map technique. A false detection rate method identifies five optimal TC clusters. Physical mechanisms of the intraseasonal and interannual variations in the TC genesis frequency are investigated for each cluster. The five clusters are separated by genesis location, from the westernmost area (east of the Philippines, C1) to the easternmost (~150°E, C5) onset area over the WNP. The intraseasonal Madden–Julian oscillation (MJO) significantly affects the genesis frequency for all clusters except for C5. In particular, MJO phases 5 and 6 (1 and 2) provide significantly favorable (unfavorable) large-scale conditions for TC genesis. Two types of El Niño–Southern Oscillation influence the interannual variation of the genesis frequency for only C2 (generated over the western Philippine Sea and East China Sea) and C4 (formed near the eastern Philippine Sea). Enhanced eastern Pacific sea surface temperature (SST) anomalies lead to a ~40% decrease in the C2 TC frequency through a reversed Walker circulation with downward motion over the WNP. Conversely, increased central Pacific SST anomalies generate a cyclonic Rossby wave northwest of the forcing, inducing a significant increase (~50%) in the C4 TC frequency. The interannual variability for the C5 TCs is strongly controlled by the variation of the western Pacific subtropical high (WPSH). A positive WPSH variation reduces the C5 TC genesis frequency by 66%, while negative WPSH anomalies enhance the frequency by 50%. A prediction scheme using information from the first four 6-h TC locations demonstrates a skillful determination of TC clusters.


SOLA ◽  
2012 ◽  
Vol 8 (0) ◽  
pp. 137-140 ◽  
Author(s):  
Satoru Yokoi ◽  
Chiharu Takahashi ◽  
Kazuaki Yasunaga ◽  
Ryuichi Shirooka

2021 ◽  
Vol 3 ◽  
Author(s):  
Tomomichi Ogata ◽  
Yuya Baba

In this study, we examine the tropical cyclone (TC) activity over the western North Pacific (WNP) in 2018–2020 and its relationship with planetary scale convection and circulation anomalies, which play an important role for TC genesis. To determine the sea surface temperature (SST)-forced atmospheric variability, atmospheric general circulation model (AGCM) ensemble simulations are executed along with the observed SST. For AGCM experiments, we use two different convection schemes to examine uncertainty in convective parameterization and robustness of simulated atmospheric response. The observed TC activity and genesis potential demonstrated consistent features. In our AGCM ensemble simulations, the updated convection scheme improves the simulation ability of observed genesis potential as well as planetary scale convection and circulation features, e.g., in September–October–November (SON), a considerable increase in the genesis potential index over the WNP in SON 2018, WNP in SON 2019, and South China Sea (SCS) in SON 2020, which were not captured in the Emanuel scheme, have been simulated in the updated convection scheme.


2013 ◽  
Vol 26 (3) ◽  
pp. 973-987 ◽  
Author(s):  
Satoru Yokoi ◽  
Yukari N. Takayabu

Abstract Variability in tropical cyclone (TC) activity is a matter of direct concern for affected populations. On interannual and longer time scales, variability in TC passage frequency can be associated with total TC frequency over the concerned ocean basin [basinwide frequency (BF)], the spatial distribution of TC genesis in the basin [genesis distribution (GD)], and the preferable track (PT) that can be considered as a function of genesis locations. To facilitate investigation of mechanisms responsible for the variability, the authors propose an approach of decomposing anomalies in the passage frequency into contributions of variability in BF, GD, and PT, which is named the Integration of Statistics on TC Activity by Genesis Location (ISTAGL) analysis. Application of this approach to TC best track data in the western North Pacific (WNP) basin reveals that overall distribution of the passage frequency trends over the 1961–2010 period is mainly due to the PT trends. On decadal time scales, passage frequency variability in midlatitudes is primarily due to PT variability, while the BF and GD also play roles in the subtropics. The authors further discuss decadal variability over the East China Sea in detail. The authors demonstrate that northward shift of the PT for TCs generated around the Philippines Sea and westward shift for TCs generated in the eastern part of the WNP contribute the variability with almost equal degree. The relationships between these PT shifts and anomalies in environmental circulation fields are also discussed.


2018 ◽  
Vol 146 (2) ◽  
pp. 435-446 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Ryuji Yoshida

Abstract The characteristics of tropical cyclones (TCs) in the summer and autumn seasons over the western North Pacific that are associated with different environmental factors that influence TC genesis (TCG) were studied. The authors objectively categorized factors into the five TCG factors classified by Ritchie and Holland: monsoon shear line (SL), monsoon confluence region (CR), monsoon gyre (GY), easterly wave (EW), and the Rossby wave energy dispersion from a preexisting TC (PTC). The GY-TCs tended to develop slowly, and the highest rates of occurrence of rapid intensification (RI) were found for the CR-TCs, whereas the GY-TCs rarely experienced RI. The average storm size of the GY-TCs at the time of formation was the largest of the averages among the TC types, while the EW- and PTC-TCs were smaller, although these differences disappeared at the mature time. There were no significant differences in the sea surface temperature (SST) beneath the TCs, but the tropical cyclone heat potential (TCHP) of the PTC-TCs was higher. The PTC-TCs tended to develop as intense TCs and exhibited favorable environmental characteristics, such as high TCHP, high convective available potential energy, and weak vertical shear. The occurrence rate of the PTC-TCs that made landfall in the Philippines was higher than the averages of the other TC types, whereas those of the EW-TCs (PTC-TCs) that made landfall in Japan (China) were lower. These results provide important information for use in disaster prevention.


2020 ◽  
Author(s):  
Rui Xiong ◽  
Mengqian Lu

<p>The western North Pacific (WNP) is one of the most active tropical cyclone (TC) regions, which can inflict enormous death and massive property damage to surrounding areas. Although many studies about tropical cyclone activities on multi-timescales have been done, most of them focus on the entire basin, variations within the basin deserve more investigations. Besides TC characteristics on different timescales, to investigate the impacts of environment variables on TC and provide informative factors for prediction is another concern in the research community. In this study, we adopt several data science techniques, including Gaussian kernel estimator, wavelet, cross-wavelet coherence and regression analyses, to explore the spatiotemporal variations of TC genesis and associated environmental conditions. Significant semiannual and annual variations of TC genesis have been found in the northern South China Sea (NSCS) and oceanic areas east of the Philippines (OAEP). In the southeast part of WNP (SEWNP), TC genesis shows prominent variations on ENSO time scale. With reconstructed TC series on those frequencies, we further quantify the influences of environmental variables on the primary TC signals over WNP. About 40% of the identified TC variance over NSCS and OAEP can be explained by variability in vertical shear of zonal wind and relative humidity. In the SEWNP, TC genesis reveals strong nonlinear and non-stationary relationships with vertical shear of zonal wind and absolute vorticity. Besides, A probabilistic clustering algorithm is used to describe the TC tracks in the WNP. The best track dataset from JMA is decomposed into three clusters based on genesis location and curvature. For each cluster, we analyze the relationships between TC properties, such as genesis location, trajectory and intensity, and associated environmental conditions using the self-organizing map. The spatial patterns of sea surface temperature have huge impacts on TC genesis location, while the trajectory is largely influenced by geopotential height.</p>


Sign in / Sign up

Export Citation Format

Share Document